The role of dietary bee pollen in antioxidant potential in rats

Marcela Capcarova1*, Adriana Kolesarova1, Anna Kalafkova1, Branislav Galik2, Milan Simko2, Miroslav Juracek2, Robert Toman3

1Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, 2Department of Animal Nutrition, Faculty of Agrobiology and Food Resources, 3Department of Veterinary Disciplines, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic

Received: 22.05.2013, Accepted: 06.06.2013

*marcela.capcarova@uniag.sk

Aim: The present study was designed to determinate the effect of bee pollen as a feed additive on the selected parameters of antioxidant status of rats.

Material and Methods: Adult Wistar rats were randomly divided into 3 groups: One control group (C) and two experimental groups (E1, E2). Experimental groups received dietary inclusion of collected bee pollen at 300 mg/kg in E1 group and 500 mg/kg in E2 group for 90 days. The group received feed without bee pollen addition served as the control group. Contents of albumin, bilirubin, iron, and total antioxidant status and superoxide dismutase activity were determined with spectrophotometer.

Results: Supplementation of the diet with bee pollen in the dose of 500 mg/kg significantly (P<0.05) increased albumin content and total antioxidant status.

Conclusion: Bee pollen addition to diets may be a source for antioxidant in human and animals.

Keywords: Bee pollen, antioxidants, blood.
Introduction

Natural health products are available to the public as food supplements and are promoted as equally or more effective, less toxic than conventional drugs (Martin-Munoz et al. 2010, Capcarova et al. 2011, Kacaniova et al. 2011, Petruska et al. 2012) and have gained increased attention in recent years. Bee pollen is an apicultural product composed of nutritionally valuable substances (Aliyazicioglu et al. 2005) and has been applied for centuries in alternative medicine as well as in food diets and as a supplementary nutrition form human and animals due to its nutritional and physiological properties (Kanner et al. 1994). Honeybee collects pollen and mixes it with its own digestive enzymes. Bee pollen is rich in protein (25%), essential amino acids, oil (6%), containing more than 51% PUFA of which 39% linolenic, 20% palmitic and 13% linoleic acid, 11 enzymes or co-enzymes and also abounds with carbohydrate (35-61%, mainly glucose, fructose and sucrose), lipid, more than 12 vitamins, 28 minerals (Echigo and Yanami 1986, Xu et al. 2009) and carotenoids (Izuta et al. 2009). Flavonoids and phenolic components of bee pollen (Bonvehi et al. 2001) provided for antioxidative and radical scavenging activity (Vinson and Hontz 1995). It was published that bee pollen had fairly strong antioxidant effects, especially against the hydrogen peroxide and superoxide radical (Nakajima et al. 2009) and had ability for inhibition of nitric oxide production (Maruyama et al. 2010).

Reactive oxygen species (ROS) are implicated in a wide range of human diseases. When an imbalance between generated ROS and available antioxidants occurs, oxidative damage will spread via free radical generation in many cellular materials (Buck et al. 1990). Various reports have previously confirmed the antioxidative effects of bee products (Moreira et al. 2008, Ahn et al. 2009) and of bee pollen of various plant species (Leja et al. 2007, Saric et al. 2009). Bee pollen contains considerable amounts of polyphenol substances (Aliyazicioglu et al. 2005) that are responsible for the antioxidative and radical scavenging activity (Vinson and Hontz 1995). It was published that bee pollen had fairly strong antioxidant effects, especially against the hydrogen peroxide and superoxide radical (Maruyama et al. 2010).

The susceptibility of iron (Fe)-deficient rat intestine to oxidative damage during Fe depletion was published by Srigiridhar and Nair (2000). Duodenal Fe²⁺ uptake is essential to body Fe²⁺ homeostasis (Smith et al. 2002).

The objective of present study was to determine the effect of bee pollen as a feed additive on the selected parameters of antioxidative status of rats.

Material and Methods

In the present study, thirty adult Wistar rats (40 days, Dobra voda, Slovakia) were involved. Rats were healthy and their condition was judged as good at the commencement of the experiment. In this animal study institutional and national guidelines for the care and use of animals were followed and all experimental procedures involving animals were approved by the State Veterinary and Food Institute of Slovak Republic, no.SVPS SR 2072/08-221/3. Rats were randomly divided into 3 groups: One control group (C) and two experimental groups (E1, E2). Rats were fed with complete feed mixture M3 (Biokron, Blucina, Czech Republic, Table 1). Experimental groups received dietary inclusion of collected bee pollen at 0.2% in E1 group and 0.5% in E2 group for 90 days. Control group received feed without bee pollen addition.

<table>
<thead>
<tr>
<th>Table 1: Nutrition value of the feed mixture for rats.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry matter</td>
</tr>
<tr>
<td>Nitrogen matters</td>
</tr>
<tr>
<td>Fat</td>
</tr>
<tr>
<td>Fiber</td>
</tr>
<tr>
<td>Ash</td>
</tr>
<tr>
<td>Copper</td>
</tr>
<tr>
<td>Retinol</td>
</tr>
<tr>
<td>Cholecalciferol</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>88%</td>
</tr>
<tr>
<td>215g/kg</td>
</tr>
<tr>
<td>22 g/kg</td>
</tr>
<tr>
<td>30 g/kg</td>
</tr>
<tr>
<td>55 g</td>
</tr>
<tr>
<td>25 mg</td>
</tr>
<tr>
<td>20000 m.u.</td>
</tr>
<tr>
<td>2000 m.u.</td>
</tr>
</tbody>
</table>
From the start of the experiment intervention, the rats were maintained in an environment of controlled temperature (20-22 °C), humidity (55±10%) and light-dark cycle (12 h-12h), with ad libitum food and water available. After 90 days rats were anæsthetised by intraperitoneal injection of sodium pentobarbital (5/100 mg/g, Sigma, St Luís, MO, USA). After cervical dislocation the rats were totally bled. Blood samples with EDTA (0.5 mL) were analysed to measure superoxide dismutase (SOD). The rest of the blood was centrifuged for 30 min at 3000xg and blood serum was obtained. Contents of albumin, bilirubin, iron, total antioxidant status (TAS) and SOD activity were determined using Randox kits (Randox Labs., Crumlin, UK) on spectrophotometer Genesys 10 (Thermo Fisher Scientific Inc, USA) according to manufacturer conditions.

Data of between control and experimental groups were analysed by one-way ANOVA (Sigma Plot 9.0 Jandel, Corte Madera, USA). Differences were compared for statistical significance at the level P<0.05.

Results

Dose of 500 mg/kg bee pollen was significantly (P<0.05) increased albumin content (Figure 1) and TAS (Figure 2). The values of this parameter ranged in similar levels in control (0.66±0.02 mmol/L) and E1 group (0.62±0.04 mmol/L) and were significantly lower (P < 0.05) than those in E2 group (0.77±0.04 mmol/L). The lowest activity of SOD in the blood of rats was found in the control group (393±33.4 U/g Hb) when compared to experimental groups (458±22.7 U/g Hb in E1; and 479±20.6 U/g Hb in E2 group). However, no significance was determined (P>0.05). The levels of serum bilirubin (C group: 21.9±1.74 mmol/L, E1 group: 19.2±13.0 mmol/L, E2 group: 22.0±6.67 mmol/L) and iron (C group: 4.67±6.19 µmol/L, E1 group: 37.6±5.71 µmol/L, E2 group: 41.2±5.86 µmol/L) were no differ statistically significance.

Discussion

Many biological and antioxidant activity were reported for bee products (Bankova 2009, Missima et al 2009, Münstedt and Bogdanov 2009, Naik et al 2009). High antiradical activity of bee pollen was manifested by high content of polyphenols (Fatrcova-Sramkova et al 2008). In our study, bee pollen inclusion to the diet insignificantly (P>0.05) increased the activity of SOD in both experimental groups. Bee pollen inclusion in the diet for mice in the dose of 100 mg/kg body weight modulated antioxidant enzymes in the liver, brain and lysate of erythrocytes and reduced hepatic lipid peroxidation (Saric et al 2009) in dose of 500 mg/kg antilipidperoxidant activity (Akkol et al 2010). Administration of bee pollen reduced the plasma concentration of malondialdehyde, an indicator of lipid peroxidation (Ishikawa et al 2009). Improvement in total antioxidants (TAS) and increase of activity of SOD in rats was noted after treatment with various natural plants or products, as Etlingera elatior (Jackie et al 2011). In this paper, addition of bee pollen in the dose of 500 mg/kg of feed mixture significantly (P<0.05) increased TAS (Figure 2) when compared to the control and E1 groups. Negative changes in most of the oxidative stress markers caused by carbaryl or propoxur given orally to rats were alleviated with the administration of bee pollen (50 or 100 mg/kg/day) (Eraslan et al 2009a, 2009b).

Bilirubin may serve a cytoprotective function as an antioxidant (Fu et al 2010) and is known to have anti-inflammatory effects linked to its ability to scavenge free radicals (Stocker 2004). In this study, addition of bee pollen had no effect on content of bilirubin in blood serum of rabbits.

Iron has been reported to mediate oxidative stress (Valko et al 2005). A high production of free radicals occurs in animal models of iron overload (Stohs and Bagchi 1995). In this study, the content of iron did not differ among the groups, thus bee pollen added to the diet did not cause any changes regarding this parameter.

Conclusions

In conclusion, bee pollen addition may be a promising source for improving antioxidant status in human and animals. In addition, it seems that the best appropriate dose was 500 mg/kg.

Acknowledgements

This work was financially supported by the VEGA scientific grant 1/0790/11 and 1/0084/12.

References

Dietary bee pollen and antioxidants


