Seroprevalence and pathological investigation of salmonellosis in poultry

M. Al Mamun1,*, M. Jamal Uddin Bhuiyan1, M. Ali Zinnah2, Abul Khair3, M. Mahmudul Hassan4, M. Bashir Uddin5

Aim: Aim of this study was to determine the seroprevalence of Salmonella along with pathological investigation in poultry.

Materials and Methods: A total of 200 birds were selected randomly for collection of serum for serum plate agglutination test and 28 samples were collected from suspected birds for gross and histopathological study. Serum plate agglutination test was performed for detection of seroprevalence and routine histopathological method was used.

Results: Out of 200 samples, 76 birds were Salmonella-positive giving the overall seroprevalence of 38.0%. Various macroscopically and microscopically pathologic lesions observed especially in the liver (haemorrhage, necrotic foci, heterophil infiltration) and intestine (goblet cell proliferation).

Conclusion: Further studies are need for the determination of the presence of Salmonella infection in farms of Bangladesh.

Keywords: Salmonellosis, poultry, seroprevalence, pathology
Salmonellosis in poultry

Introduction

Among different constraints of poultry industries, outbreaks of salmonellosis is one of the major constraints causing economic loss and discouraging poultry rearing (Das et al. 2005). Avian salmonellosis is considered as a major bacterial disease in the poultry industry worldwide. The importance of salmonellosis in poultry sector has increased to be of concern day by day throughout the world during the last decades. The etiologic agents are responsible for various pathogenic processes in man and animals including poultry (Freeman 1985). Infections with bacteria of the genus Salmonella are responsible for major problem of poultry farming in Bangladesh (Kamaruddin et al. 2003). Salmonellosis in poultry causes significant economic loss due to mortality and reduced production (Khan et al. 1998). With the expansion of poultry farming, prevalence of salmonellosis in both breeder flock, commercial broiler and layer flocks is increasing day by day. Pathological investigation is an important thing for the diagnosis of disease which helps in the proper treatment of salmonellosis and control of the disease in poultry farm. Keeping this in consideration this seroprevalence study and pathological investigation was undertaken.

Materials and Methods

The present research work was conducted during the period from January to December, 2010 in the laboratory of the Department of Pathology & Parasitology, and Anatomy and Histology, Sylhet Agricultural University, Sylhet, Bangladesh. Research was approved by a legal ethic committee. A total of 200 chickens belonging to 4 groups Starter (0-8 wks), Pre layer (9-20 wks), Layer (21-60 wks) and Post layer (>60 wks) of the 25 poultry farms of Sylhet region of Bangladesh was examined for seroprevalence study. Blood was aseptically collected from the wing veins and sera were separated. Standard Salmonella antigen (Salmonella O, S & A reagent company, Bangkok, Thailand) was used for rapid serum plate agglutination (SPA) test for the detection of Salmonella antibodies to determine the seroprevalence. Suspected visceral organs of 28 dead birds were also collected for gross and histopathological study.

Chi-square test was used in the evolution of between groups. p<0.05 was accepted as statistically significance level.

Results

Out of 200 samples, 76 chickens were Salmonella-positive giving the overall seroprevalence of 38.0% in live birds and the rate of seroprevalence increased with advancement of age of birds (Table 1). The chickens were categorized by four types of groups rearing practices in our farming system. The percent (%) proportion of Salmonella-positive and negative cases were 38% and 62%, respectively. While that observed in different categories were 14.5% starter, 27% pre-layer, 46% layer and 12.5% post layer (Table 2). Significant differences (χ²=25.6, p<0.001) showed in different categories (Table 1). In pathological investigation, grossly the lesions in the liver showed variable changes including enlargement and congestion, haemorrhage, friable and bronze discoloration with necrotic foci. Spleen was enlarged, discolored and in some cases it shows shiny. Ovary of Salmonella affected chicken showed haemorrhage and congestion with deformed ova. Lungs were congested, haemorrhagic and pneumonic. Lesions found in the intestine were various types of enteritis moderate to severe mucous in the intestine. Yolk sac was haemorrhagic and congested. Microscopically the liver showed focal degeneration, necrosis with haemorrhage and congestion. Section of liver shows infiltration of heterophils mainly histiocytes and accumulation of leukocytes which replaced the degenerated or necrotic liver cells (Figure 1). Section of infected spleen showed haemorrhage and congestion with infiltration of inflammatory cells. In intestine, there were excessive proliferation of goblet cells with infiltration of inflammatory cells in the mucosa and submucosa (Figure 2).

Discussion

The overall seroprevalence of Salmonella infection was detected as 38.0% (Table 1). In the studies, lower and higher seroprevalences were reported (Ashenafi et al. 2003, Habibur-Rehman et al. 2003, Akter et al. 2007, Hossain et al. 2010). This difference may be...
due to geographical variation or density of population. It was found that the prevalence increased with the increase of age. Significant differences ($\chi^2=25.6, p<0.001$) observed in different categories (Table 1 and 2). Similar results were also reported previously (Akter et al 2007, Ahmed et al 2008, Hossain et al 2010). In pathological investigation, pathologic lesions were observed in the liver, spleen, ovary, lungs, intestine and yolk sac (Figure 1-2). Discolored eggs were also found. These findings were supported by many researchers (Hossain et al 2006, Desmukh et al 2007, Ahmed et al 2008). In the microscopic examination, some lesions were determined in the liver (degeneration, necrosis, haemorrhage, heterophil infiltration, etc), spleen (haemorrhage, inflammatory cell infiltration), intestine (goblet cell proliferation), cecum (goblet cell proliferation) and egg follicles (Figure 1-2). Similar findings were also reported by researchers (Hossain et al 2006, Desmukh et al 2007, Ahmed et al 2008).

Table 2. Percentages (%) of estimation in different categories with 95% Confidence Interval

<table>
<thead>
<tr>
<th>Category</th>
<th>Percentages (%)</th>
<th>Standard Error</th>
<th>95% Confidence Interval Lower limit</th>
<th>Upper limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starter</td>
<td>14.50</td>
<td>2.495</td>
<td>9.57804</td>
<td>19.421</td>
</tr>
<tr>
<td>Pre layer</td>
<td>27.00</td>
<td>3.147</td>
<td>20.79397</td>
<td>33.206</td>
</tr>
<tr>
<td>Layer</td>
<td>46.00</td>
<td>3.533</td>
<td>39.03299</td>
<td>52.967</td>
</tr>
<tr>
<td>Post layer</td>
<td>12.50</td>
<td>3.244</td>
<td>7.87694</td>
<td>17.123</td>
</tr>
<tr>
<td>Case</td>
<td>Negative</td>
<td>62.00</td>
<td>3.440</td>
<td>55.21487</td>
</tr>
<tr>
<td>Positive</td>
<td>38.00</td>
<td>3.440</td>
<td>31.21487</td>
<td>44.785</td>
</tr>
</tbody>
</table>

Figure 2. Section of intestine showing enteritis with excessive proliferation of goblet cells, infiltration of plasma cells, heterophils and macrophages.

Conclusions

The results of the present investigation suggests that further study of the presence of Salmonella in multiple large-scale farming operations; however, the study provides useful information for all farmers and researchers concerned about the disease control.

Acknowledgements

The authors greatly express their deep feelings to the Department of Pathology and Parasitology, Chittagong Veterinary and Animal Sciences University (CVASU), Chittagong, Bangladesh for their kind cooperation during this study.

References

