

RESEARCH ARTICLE

Investigating the Impacts of Hatchery Application of Chlorine, Hydrogen Peroxide, Sodium Chloride on Survival and Haematological Profiles of *Clarias gariepinus* Juveniles

Adebola Oluyinka Ajiboye^{1,(*)}, Olayinka Remilekun Anifowose², Ifebuche Juliana Nwodo¹

¹University of Ibadan, Faculty of Renewable Natural Resources, Department of Aquaculture and Fisheries Management, Ibadan, Nigeria

²University of Ibadan, Faculty of Veterinary Medicine, Department of Veterinary Medicine, Ibadan, Nigeria

Abstract

Indiscriminate use of disinfectants in aquaculture caused ecological problems to aquatic organisms. This study was aimed to assess the median lethal concentrations 96h-LC50 of Chlorine, Hydrogen peroxide, and Sodium chloride on survival and hematological parameters of *Clarias gariepinus* juveniles. Three hundred and sixty fish (n=360) was divided into three groups, 120 fish (n= 120/ per disinfectant), each 120 fish was divided into five groups (n= 24/group). The fish were exposed to Chlorine (3mg, 9mg, 15mg, 21mg L-1), hydrogen peroxide (3mg, 9mg, 15mg, 21mg L-1), sodium chloride (3g, 9g, 15g, 21g L-1) and a control group for 96 hours. The median lethal concentration 96h-LC50 was evaluated using Probit analysis IBM SPSS 23 and haematological parameters were evaluated using one way ANOVA, significance is considered as $p \leq 0.05$. The 96-LC50 values were: 7.422mgL-1 (Chlorine), 9.075mgL-1 (Hydrogen peroxide), and 10.172gL-1 (Sodium chloride). Sodium chloride, hydrogen peroxide and chlorine showed highest, moderate and lowest survival rates, respectively. Significant ($p < 0.05$) anaemia, leukocytosis, and heterophilia were observed in groups exposed to chlorine, hydrogen peroxide (3 mg/L – 21mg/L) and Sodium chloride (3 g/L – 21g/L) compared to control group. Reduced hemoglobin concentration and red blood cell counts were observed in fish exposed to chlorine and hydrogen peroxide (15 mg/L – 21mg/L) compared to control group. In this study, exposure to low and high concentrations of chlorine, hydrogen peroxide, and sodium chloride induced stress and altered the hematological parameters in *Clarias gariepinus* juveniles.

Keywords: Chlorine, disinfectants, hematology, hydrogen peroxide, sodium chloride

(*) Corresponding author:

Adebola Oluyinka Ajiboye
debron2005@yahoo.com

Received: 05.10.2025

Accepted: 28.12.2025

Published: 30.12.2025

How to cite this article?

Ajiboye AO, Anifowose OR, Nwodo IJ 2025. Investigating the Impacts of Hatchery Application of Chlorine, Hydrogen Peroxide, Sodium Chloride on Survival and Hematological Profiles of *Clarias gariepinus* Juveniles. Eurasian J Vet Sci, 41, e0470.

INTRODUCTION

Aquaculture is a faster growing sector of food production in the world. The cultivation of aquatic animals in a controlled environment is called aquaculture. The controlled environments could be freshwater and saltwater depending on the geographical location of the environment. Aquaculture provides a sustainable, alternative, cheaper, and abundant protein source to reduce global food insufficiency (Bhujel 2024).

Moreover, varying dietary habits and increased population expanded aquaculture from sustenance to large-scale production (Saini et al 2024). In Nigeria, the phenomenal growth in aquaculture industry is majorly due to large production of African catfish, *Clarias gariepinus* (*C. gariepinus*), a member of the family Clariidae (Olagunju 2024).

The popular production of *C. gariepinus* in Nigeria is attributed to high growth rate, and palatability. In addition, other qualities included resilience, ability to endure a wide range of temperatures, low dissolved oxygen, and salinity (Remilekun et al 2021). Reproduction of *C. gariepinus* does not occur in captivity. Meanwhile, artificial propagation provided means of seedlings through possibility of controlled spawning and hatching. Despite this potential, the aquaculture industry faces significant impediments, primarily due to diseases and improper management, which lead to substantial economic losses (Anifowose et al 2024a).

C. gariepinus is susceptible to bacterial and parasitic infections. Several factors are contributed to the susceptibility, these include poor water quality such

This article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)

as inadequate water exchange, buildup of organic matter, excessive ammonia levels, and stressful conditions which might be overcrowding, handling, and transportation (Latief et al 2024). The stressors can drastically affect the immune system and increase the vulnerability of fish to disease. The mortality rate due to infectious diseases is high with huge economic loss in aquaculture compared to terrestrial livestock (Haenen et al 2023).

Furthermore, the environmental impacts of aquaculture including nutrient runoff, require careful management to mitigate negative effects on surrounding ecosystems.

Disinfectants are chemical compounds used in aquaculture to control fish pathogens that can cause disease in aquatic animals. The chemical substances are used for years to protect fish from diseases (Dinesh et al 2022). The disinfectants commonly used included chlorine, formalin, hydrogen peroxide, potassium permanganate, and sodium chloride. Nevertheless, indiscriminate use of these chemicals, application of excessive amounts, and stocking fish immediately after usage, can damage the aquatic environment (Yeşilbudak 2024). Moreover, the widespread usage, especially in developing countries, has raised concerns about potential ecotoxicity. Excessive application of disinfectant can adversely impact fish survival, haematology, and histopathology, leading to economic and fish seed loss. The critical factors for successful aquaculture management are concentration of disinfectants and the timing on fish exposure (Newman 2021).

Blood analysis is a crucial tool for assessing the toxic effects of chemicals on aquatic organisms (Bojarski et al 2025). Regular clinical blood examination is an important tool for diagnosing health challenges (Ekici et al 2021). Hematological parameters can reveal physiological changes long before visible symptoms appear. The red and white blood cells, hemoglobin content, and hematocrit values in fish can be changed as a result of exposure to excessive disinfectants. In addition, stress responses can be initiated through exposure of fish to high level of disinfectants. This stress load may compromise physiological and biochemical functions, resulting into detrimental health effects (Witeska et al 2023). The damage of DNA and formation of nuclear abnormalities caused by abnormal usage of disinfectant can be evaluated through presence of micronuclei in fish erythrocytes. The stress could be assessed through changes in common haematological variables, haemoglobin content, and hematocrit values. Previous studies have shown that *C. gariepinus* exposed to disinfectants exhibited significant alterations in

the blood parameters (Xu et al 2021). The damage of DNA and production of nuclear abnormalities in erythrocytes are caused by excessive concentration of disinfectants at the cellular level. Therefore, the occurrence of micronuclei in fish erythrocytes provided a valuable biomarker for assessing genotoxicity in aquatic environments during in vivo laboratory studies (D'Agostini et al 2021).

The younger fish showed more symptoms of negative impact of excessive concentration of disinfectants. In addition, some disinfectants can bioaccumulate in fish tissue, posing risks to species higher up the food chain. Constant exposure to sub-lethal disinfectant concentrations led to physiological and behavioral changes that may reduce fish populations and decrease predator avoidance.

However, this study is aimed to investigate the toxicological responses of the African catfish, *C. gariepinus*, to exposure chlorine, hydrogen peroxide, and sodium chloride by immersion of water in fish hatchery.

MATERIAL AND METHODS

Ethics approval and consent to participate

Handling of experimental Fish, Ethical clearance, and valid approval were obtained from the Animal Care and Use Research and Ethics Committee (ACUREC) of the University of Ibadan in order to use animals for our studies on disinfectants (NHREC/UIACUREC/05/12/2022A).

Experimental animals and acclimatization

Three hundred and sixty juveniles of *Clarias gariepinus* ($n = 360$ with an average weight of 3.47 ± 0.95 g, length of 6 ± 0.7 cm was procured from commercial fish farm in Ibadan. The fish were stored in 1000 L plastic tanks and acclimatized for 2 weeks. During the acclimatization period, the fishes were fed with commercial feed twice daily ad libitum and the stock water was changed once every other day to prevent the accumulation of decaying food particles and waste metabolites.

Acute toxicity

The fish acute toxicity test employed in this study is TG203 and OECD (2019). Chlorine® (USA), Hydrogen peroxide®, (Nigeria), and Sodium chloride®, (China) were purchased for acute toxicity tests on *Clarias gariepinus* juveniles. Acute toxicity test of the chemicals was carried out to determine the lethal concentrations 96h- LC₅₀ to *C. gariepinus*. The *C. gariepinus* juveniles were subjected to each chemical toxicity test for 96 hours, to determine the toxic concentration range and the related timing OECD (2019). The test was carried out using 10L plastic tanks and the fish were distributed equally into five different

Table 1. Toxicity study (96h-LC₅₀) for Chlorine on *Clarias gariepinus* Juvenile

Concentration of Chlorine (mg/L)	Log of Conc.	Number of Subjects	Observed Responses	Expected Responses	Residual	Probability
0	0.000	24	0	0.000	0.000	.000
3	0.477	24	8	6.617	1.383	.276
9	0.954	24	10	13.210	-3.210	.550
15	1.176	24	16	16.276	-276	.678
21	1.322	24	20	18.071	1.020	.752
Probability	Chlorine (mg/L)					
	96h-LC ₅₀	Lower Limit	Upper Limit			
0.05	7.422	3.989	11.195			

groups; 120 fish were divided into five groups (n= 24). The groups were; A, B, C, D, and E. Pilot study was earlier carried using varying concentration of chlorine, hydrogen peroxides, and sodium chloride on *Clarias gariepinus* juveniles. The first group was control, while, varying concentrations of Chlorine was added to the water at 3mg/L, 9mg/L, 15mg/L, 21mg/L, respectively. Every 12 hours, mortality rates were monitored and recorded. The 96h-LC₅₀ was calculated using Probit Analysis method (Uçar 2024). Another 120 fish (n = 120) were divided into five groups and 96h-LC₅₀ acute toxicity test was carried out using hydrogen peroxide with varying concentrations was added to the water at 3mg/L, 9mg/L, 15mg/L, 21mg/L, respectively. Moreover, the last 120 fish (n = 120) was divided into five groups and Sodium chloride with varying concentrations was added to water at 3g/L, 9g/L, 15g/L, and 21g/L, respectively (Pulido-Reyes et al 2024). The fish were subjected to photoperiod of 12 hours light (daylight) and 12 hours darkness (midnight). The water in the plastic tank was not changed throughout 96 hours. Fifty millilitres of water samples in the plastic tanks were collected aseptically using sterile cap bottles. The water samples were transported to Aquatic Animal and Wildlife Laboratory, Department of Veterinary medicine,

University of Ibadan. For water quality parameters, namely; Dissolved Oxygen (DO), pH, Nitrite, Alkalinity, and Ammonia were determined according to [APHA \(1995\)](#). The parameters like DO and pH were determined directly in the ponds using YSI 556-meter function as pH and DO meter, temperature with a Hach conductivity meter (Model DR2400). Ammonia and nitrite were determined by chemical method and ELISA reader using optical density of color development at different wavelength.

Hematology

Following 96 hours of acute toxicity, four fish (n=4) were randomly sampled from each tank to collect blood. Each of the sampled fish was handled with physical restrain and manual covering of eyes with a sterile glove. For each sampled fish, blood was drawn from the caudal vein using a 1-mL sterile hypodermal syringe with a 24-gauge needle. The collected blood was then transferred into heparinized Eppendorf tubes and transported to the Clinical Laboratory of the Department of Veterinary Medicine, University of Ibadan. A haematological analysis was subsequently performed on the samples according to the method described by [Adeshina et al \(2020\)](#).

Table 2. Toxicity study (96h-LC₅₀) for Hydrogen peroxide on *Clarias gariepinus* Juvenile

Concentration of Hydrogen peroxides (mg/L)	Log of Conc.	Number of Subjects	Observed Responses	Expected Responses	Residual	Probability
0	0.000	24	0	0.000	0.000	.000
3	0.477	24	8	7.296	.704	.304
9	0.954	24	10	11.221	-1.221	.468
15	1.176	24	12	13.138	-1.138	.547
21	1.322	24	16	14.381	1.619	.599
Probit Analysis						
Fish Type	Probability	Hydrogen peroxide (mg/L)				
		96h-LC ₅₀	Lower Limit	Upper Limit		
Juvenile	0.05	9.075	3.858	86.804		

Table 3. Toxicity study (96h-LC ₅₀) for Sodium chloride on <i>Clarias gariepinus</i> Juvenile						
Concentration of Sodium chloride (g/L)	Log of Conc.	Number of Subjects	Observed Responses	Expected Responses	Residual	Probability
0	0.000	24	0	0.000	0.000	.000
3	0.477	24	0	.000	.000	.000
9	0.954	24	0	.019	-.019	.001
15	1.176	24	1	2.759	-1.759	.120
21	1.322	24	14	12.620	1.380	.549
Probit Analysis						
Fish Type	Probability	Sodium chloride (g/L)				
		96h-LC ₅₀	Lower Limit	Upper Limit		
Juvenile	0.05	10.172	9.136	12.679		

Statistical analysis

The tests for normality and homogeneity of variance were performed on the data obtained. Statistical software SPSS version 23 was employed for statistical analysis of data. The Probit Analysis method as reported by Uçar (2024) was used to estimate the lethal concentration value of 96-h LC₅₀. Analysis of variance (ANOVA) and Duncan multiple range test (DMRT) were employed to calculate the level of significance observed in haematological parameters. Differences were considered significant at $p \leq 0.05$ for all the datasets. Superscripts in the tables are used to indicate significant differences.

RESULTS

The behavior of the fish, *C. gariepinus*, changed as they were exposed to disinfectants. As the concentration and exposure time of the disinfectant increased, the fish showed more abnormal behaviors like hyperactivity, erratic swimming, and loss of equilibrium. While somersaulting and jumping were observed at higher concentrations, the activities ceased at lower concentrations of the disinfectant. The exposed fish demonstrated a reduction in movement, including a slower swimming rate, minimal fin movement, and eventually settling motionless at the

bottom of the tank. No fish in the control group died during the exposure period. The lethal concentrations for chlorine, hydrogen peroxide, and sodium chloride were determined using IBM SPSS 23 Probit Analysis, with results presented in Tables 1, 2, and 3, respectively. The experimental 96h-LC50 for chlorine was lowest in *C. gariepinus* which was 7.422mg/L indicating most toxic. Hydrogen peroxide 9.075mg/L was lower in *C. gariepinus* indicating moderate toxicity, while, sodium chloride was highest in *C. gariepinus* was 10.172g/L indicating the least toxic disinfectant.

The survival rate was decreasing with an increase in concentration of chlorine exposed to *C. gariepinus*. The survival rate was decreasing with an increase in concentration of hydrogen peroxide to *C. gariepinus*, meanwhile, survival rate remained the same with an increase in concentration of sodium chloride exposed to *C. gariepinus*. Although, 21 g/L showed lowest survival rate of 10. Sodium chloride showed highest survival rate compared to other disinfectants, meanwhile, hydrogen peroxide indicated a moderate survival rate and chlorine showed lowest survival rate (Table 4). Significant ($p < 0.05$) anaemia, leukocytosis, and heterophilia were observed in groups exposed to chlorine (3 mg/L – 21mg/L) compared

Table 4. Survival Rate of *Clarias gariepinus* juveniles exposed to varying concentrations of Chlorine, Hydrogen peroxide and Salt for 96 hours

Concentration of Chlorine mg/L	Survival rate	Concentration of Hydrogen peroxide mg/L	Survival rate	Concentration of Sodium chloride g/L	Survival rate
0	24	0	24	0	24
3	16	3	16	3	24
9	14	9	14	9	24
15	8	15	12	15	23
21	4	21	8	21	10

Table 5. Haematology of *Clarias gariepinus* juveniles exposed to Chlorine at varying concentration for 96 hours

Parameters	Control (M±SEM)	Chlorine 3mg/L (M±SEM)	Chlorine 9mg/L (M±SEM)	Chlorine 15mg/L (M±SEM)	Chlorine 21mg/L (M±SEM)
PCV (%)	21.33±0.67 ^c	19.33±0.33 ^b	18.00±0.58 ^b	17.67±1.67 ^b	16.00±0.31 ^a
Hb (%)	7.00±1.00 ^c	7.83±0.12 ^c	7.07±0.27 ^c	6.23±0.53 ^b	4.83±0.23 ^a
RBC (x 10 ¹² /L)	6.17±0.17 ^c	6.71±0.14 ^c	5.55±0.07 ^b	5.00±0.22 ^b	4.71±0.45 ^a
WBC (x 10 ⁹ /L)	3.60±0.23 ^a	4.87±0.13 ^b	4.80±0.12 ^b	4.61±0.20 ^b	4.87±0.58 ^b
Lymphocytes (%)	40.00±1.15 ^b	39.00±0.58 ^a	37.33±0.88 ^a	38.33±0.67 ^a	44.00±0.60 ^c
Heterophilis (%)	59.00±1.15 ^b	61.60±1.15 ^c	62.33±0.67 ^c	61.33±2.33 ^c	55.70±0.067 ^a
Monocytes (%)	1.00±0.00 ^b	0.40±0.58 ^a	0.33±0.33 ^a	0.34±0.33 ^a	0.30±0.29 ^a

Values with different superscript along the row are statistically significant (p < 0.05) according to ANOVA

Table 6. Haematology of *Clarias gariepinus* juveniles exposed to Hydrogen peroxide at varying concentration for 96 hours

Parameters	Control (M±SEM)	Hydrogen peroxide 3mg/L (M±SEM)	Hydrogen peroxide 9mg/L (M±SEM)	Hydrogen peroxide 15mg/L (M±SEM)	Hydrogen peroxide 21mg/L (M±SEM)
PCV (%)	21.33±0.67 ^a	19.33±0.33 ^b	18.00±0.58 ^b	16.00±0.31 ^c	15.90±0.15 ^c
Hb (%)	7.00±1.00 ^a	5.83±0.12 ^b	5.07±0.27 ^b	4.83±0.23 ^c	4.07±0.32 ^c
RBC (x 10 ¹² /L)	6.17±0.17 ^a	6.71±0.14 ^a	5.55±0.07 ^b	4.71±0.45 ^b	4.55±0.06 ^b
WBC (x 10 ⁹ /L)	3.60±0.23 ^a	4.87±0.13 ^b	4.80±0.12 ^b	6.87±0.58 ^c	6.80±0.21 ^c
Lymphocytes (%)	40.00±1.15 ^a	42.00±0.58 ^b	42.33±0.88 ^b	45.00±0.60 ^c	45.33±0.34 ^c
Heterophilis (%)	59.00±1.15 ^a	57.00±1.15 ^b	56.33±0.67 ^b	54.00±0.067 ^c	54.63±0.47 ^c
Monocytes (%)	1.00±0.00 ^a	1.00±0.58 ^a	0.33±0.33 ^b	1.00±0.29 ^a	1.04±0.45 ^a

Values with different superscript along the row are statistically significant (p < 0.05) according to ANOVA

Table 7. Haematology of *Clarias gariepinus* juveniles exposed to Sodium chloride at varying concentration for 96 hours

Parameters	Control (M±SEM)	Sodium chloride 3g/L (M±SEM)	Sodium chloride 9g/L (M±SEM)	Sodium chloride 15mg/L (M±SEM)	Sodium chloride 21mg/L (M±SEM)
PCV (%)	21.33±0.67 ^a	20.67±1.67 ^a	0.00±0.58 ^a	20.00±0.31 ^a	18.13±1.43 ^b
Hb (%)	7.00±1.00 ^a	6.93±0.53 ^a	7.07±0.27 ^a	6.83±0.23 ^a	4.20±0.21 ^b
RBC (x 10 ¹² /L)	6.17±0.17 ^a	6.00±0.22 ^a	6.55±0.07 ^a	6.71±0.45 ^a	4.55±0.15 ^b
WBC (x 10 ⁹ /L)	3.60±0.23 ^a	3.61±0.20 ^a	3.80±0.12 ^a	3.87±0.58 ^a	5.49±0.35 ^b
Lymphocytes (%)	40.00±1.15 ^a	40.33±0.67 ^a	41.33±0.88 ^a	40.00±0.60 ^a	42.10±0.58 ^b
Heterophilis (%)	59.00±1.15 ^a	59.33±2.33 ^a	58.33±0.67 ^a	59.00±0.067 ^a	56.56±2.12 ^b
Monocytes (%)	1.00±0.00 ^a	0.34±0.33 ^a	0.34±0.33 ^a	1.00±0.29 ^a	1.34±0.26 ^b

Values with different superscript along the row are statistically significant (p < 0.05) according to ANOVA

to control group. Reduced haemoglobin concentration and red blood cell counts were observed in exposed to chlorine (15 mg/L – 21mg/L) compared to control group. Lymphopenia was observed in groups exposed to chlorine (3 mg/L – 15 mg/L) compared to control group, meanwhile, group exposed to chlorine 21 mg/L showed lymphocytosis compared to control group (Table 5).

Significant (p<0.05) anaemia, leukocytosis, and heteropenia were observed in groups exposed to hydrogen peroxide (3 mg/L – 21mg/L) compared to control group. Reduced haemoglobin concentration and red blood cell counts were observed in exposed to hydrogen peroxide (3 mg/L – 21mg/L) compared to control group. Lymphocytosis was observed in groups exposed to

Table 8. Physicochemical findings of experimental water tanks during exposure of <i>Clarias gariepinus</i> juveniles to Chlorine at varying concentration for 96 hours						
Parameters	Control (M±SEM)	3g/L (M±SEM)	9g/L (M±SEM)	15mg/L (M±SEM)	21mg/L (M±SEM)	Standard Values for Fish Farming APHA 1989, Boyd and Tucker 1992
pH	7.00±0.10 ^a	6.80±0.10 ^a	6.60±0.10 ^a	6.40±0.10 ^a	5.9±0.10 ^b	6.5 – 8.5
Nitrite (ppm)	0.00±0.00 ^b	0.01±0.008 ^b	0.01±0.008 ^b	0.01±0.008 ^b	0.01±0.008 ^b	0.05 max
Ammonia (ppm)	0.00±0.00 ^b	0.10±0.02 ^b	0.10±0.02 ^b	0.30±0.02 ^b	0.50±0.02 ^b	2.0 max
Dissolved Oxygen (ppm)	8.5±1.0 ^a	8.5±1.0 ^a	7.9±1.0 ^a	5.5±1.0 ^b	4.0±1.0 ^b	5.0 min

Values with different superscript along the row are statistically significant ($p < 0.05$) according to ANOVA

Table 9. Physicochemical findings of experimental water tanks during exposure of <i>Clarias gariepinus</i> juveniles to Hydrogen peroxide at varying concentration for 96 hours						
Parameters	Control (M±SEM)	3g/L (M±SEM)	9g/L (M±SEM)	15mg/L (M±SEM)	21mg/L (M±SEM)	Standard Values for Fish Farming APHA 1989, Boyd and Tucker 1992
pH	7.00±0.10 ^a	6.6±0.10 ^a	6.5±0.10 ^a	6.3±0.10 ^a	5.9±0.10 ^b	6.5 – 8.5
Nitrite (ppm)	0.00±0.00 ^b	0.01±0.008 ^b	0.01±0.008 ^b	0.01±0.008 ^b	0.01±0.008 ^b	0.05 max
Ammonia (ppm)	0.00±0.00 ^b	0.10±0.02 ^b	0.10±0.02 ^b	0.30±0.02 ^b	0.50±0.02 ^b	2.0 max
Dissolved Oxygen (ppm)	8.5±1.0 ^a	8.5±1.0 ^a	6.8±1.0 ^b	5.0±1.0 ^b	4.5±1.0 ^b	5.0 min

Values with different superscript along the row are statistically significant ($p < 0.05$) according to ANOVA

Table 10. Physicochemical findings of experimental water tanks during exposure of <i>Clarias gariepinus</i> juveniles to Sodium chloride at varying concentration for 96 hours						
Parameters	Control (M±SEM)	3g/L (M±SEM)	9g/L (M±SEM)	15mg/L (M±SEM)	21mg/L (M±SEM)	Standard Values for Fish Farming APHA 1989, Boyd and Tucker 1992
pH	7.00±0.10 ^a	7.0±0.10 ^b	7.0±0.10 ^b	7.0±0.10 ^b	7.0±0.10 ^b	6.5 – 8.5
Nitrite (ppm)	0.00±0.00 ^b	0.01±0.008 ^b	0.01±0.008 ^b	0.01±0.008 ^b	0.01±0.008 ^b	0.05 max
Ammonia (ppm)	0.00±0.00 ^b	0.10±0.02 ^b	0.10±0.02 ^b	0.30±0.02 ^b	0.50±0.02 ^b	2.0 max
Dissolved Oxygen (ppm)	8.5±1.0 ^a	8.5±1.0 ^a	8.5±1.0 ^a	8.5±1.0 ^a	6.7±1.0 ^b	5.0 min

Values with different superscript along the row are statistically significant ($p < 0.05$) according to ANOVA

chlorine (3 mg/L – 21 mg/L) in a dose-dependent manner compared to control group (Table 6).

Significant ($p < 0.05$) anaemia, leukocytosis, and heteropenia were observed in group exposed to Sodium chloride (21g/L) compared to control group. Reduced haemoglobin concentration and red blood cell counts were observed in group exposed to Sodium chloride (21g/L) compared to control group. Lymphocytosis was observed in groups exposed to Sodium chloride (21 g/L) in compared to control group (Table 7).

DISCUSSION

Disinfectants are chemicals used in aquaculture for control and prevention of infection. The effect of a particular disinfectant may not be targeted on specific pathogens. The results of this study in acute toxicity to the exposed catfish showed that the median lethal toxicity was 7.422 mg/L for chlorine, 9.075 mg/L for hydrogen peroxide, and 11.075 gL⁻¹ for sodium chloride. The result in this study

showed that acute toxicity required higher mass volume in sodium chloride compared to other disinfectants. Meanwhile, sodium chloride caused least damage on haematology of the fish among the assessed disinfectants.

This difference in toxicity may be compared with their respective specific mechanism of action, varying degrees of toxicity, and chemical composition. Toxicity of chlorine disinfectants showed caused damage to respiratory and digestive system leading into mortalities (Kolawole and Iyiola 2021).

The aquatic usefulness of sodium chloride included, growth enhancement, parasitic treatment, and control of toxicity. In addition, sodium chloride was reported to show effective treatment of fresh water fish external parasitic infection and improve stress during transport (Tavares-Dias 2022). This corroborates that sodium chloride is least toxic. Though, the effectiveness of sodium chloride is related to species and concentration used (Tavares-Dias 2022). This implies that additional study on mode

of action of these disinfectants is necessary to elucidate responses from acute toxicity in this study.

Furthermore, responses of fish due to toxicity are related and dependent on factors such as characteristics of the chemical involved, environmental effect, susceptibility of the fish, disinfectant specificity, and aquatic animal species specificity.

For example, 96-h LC₅₀ value of 9.075 mgL⁻¹ observed for hydrogen peroxide in this present study was lower than the 10.172 g/L reported for sodium chloride but higher than that of chlorine (7.422 mgL⁻¹). Though hydrogen peroxide is much more toxic on a mass-unit basis which was indicated in sub-acute test on haematology of the fish at different concentration. Myelinization and erratic swimming behavior are symptoms of acute toxicity. This was reported in shrimps reared in biofloc systems using rapidly administered hydrogen peroxide to overcome low oxygen levels due to the absence of aeration (Bögner et al 2021), and the control of oomycetes on all stages and life stages of fish (Dinesh et al 2022).

The concentration and time of exposure are major determinants to determine the degree of toxicity of disinfectant. The recommendation of disinfectants for use in hatchery water and other facilities would be centered on concentration and exposure time.

The pH and dissolved oxygen of water tanks were significantly lower in *C. gariepinus* groups exposed to 21mg/L of chlorine and 21mg/L of hydrogen peroxide in comparison to the control groups. The fishes can become stressed in water with a pH ranging from 4.0 to 6.5 and 9.0 to 11.0 (Ekubo and Abowei 2011). The pH observed in this study was lower than 6.5 leading low survival rate detected in *C. gariepinus* groups exposed to 21mg/L of chlorine and 21mg/L of hydrogen peroxide, respectively.

Dissolved oxygen affects the growth, survival, distribution, behavior, and physiology of fish (Solis 1988). Oxygen depletion in water leads to poor feeding of fish, starvation, reduced growth, and fish mortality, either directly or indirectly (Bhatnagar and Garg 2000). According to Banerjea (1967), dissolved oxygen for average fish production should be above 5 parts per million, and dissolved oxygen 1–3 parts per million has a sublethal effect on survival, growth and feed utilization (Bhatnagar et al 2004). Low dissolved oxygen observed in *C. gariepinus* groups exposed to 21mg/L of chlorine and 21mg/L of hydrogen peroxide may be as a result of chemical degradation and toxic effect of the chemicals used. The resultant effect of lower pH and dissolved oxygen in *C. gariepinus* groups exposed to higher dose of chlorine and hydrogen peroxide led to lower survival rate. In contrast, the pH and dissolved oxygen of water tanks in *C. gariepinus* groups exposed to sodium chloride were

similar to the control group. However, the normal level of pH and dissolved oxygen in *C. gariepinus* groups exposed to higher dose of sodium chloride led to higher survival rate.

The packed cell volume, RBC, Hb, and heterophil counts were significantly lower in *C. gariepinus* groups exposed to chlorine in an increasing order and in a dose-dependent manner. Specifically, *C. gariepinus* exposed to 21mg/L of chlorine showed lower PCV values, this may infer that higher dose of chlorine involved in breakdown of components of blood resulting in a decrease in the amount of blood in the body of exposed fish. In addition, the loss of blood cells was probably caused by cell destruction and failure of blood production to recompense for the blood loss. The severe anaemia observed in higher the group exposed to higher dose of chlorine may be due to renal damage thereby preventing erythropoiesis (Adeyemi et al 2014, Achilike and Wusu 2019, Anifowose et al 2024b). Moreover, heterophils also showed decreased in values which was an indication in response to challenge. Heterophils are important for intrinsic defense mechanism of the host against pathogens and toxins. Previous studies reported heterophils are agents of innate immune defense and also involved in maintenance of homeostasis. Heterophils are first leukocytes engaged in inflammatory sites and coordination of subsequent adaptive mechanisms. The significantly lower number of neutrophils in the blood in the group exposed to higher dose of chlorine implied a probable collapse of the host defense system. The lower value of heterophils in the exposed group to higher dose of chlorine indicated possibly compromised which indicate that some of the defense forces (neutrophils) are possibly compromised in the fight to protect the host fish from attack (Flerova et al 2013, Buchmann 2022). Monocytes were not significantly different in all the groups exposed to chlorine compared to the control groups. This may infer a mild breakdown of monocytic cells in the exposed fish to chlorine.

In contrast, WBC counts and lymphocytes were significantly higher in *C. gariepinus* groups exposed to chlorine in an increasing order and in a dose-dependent manner. Explicitly, *C. gariepinus* exposed to 21mg/L of chlorine showed higher WBC and lymphocytes. This may indicate an increase in phagocytic cells and defense activity against the toxins produced by chlorine. A higher white blood cell counts indicate a response to stress, implies an intrinsic immune activity aimed at fighting the toxins, and a probable surviving strategy for the exposed fish (Dauda 2018). Moreover, in *C. gariepinus* groups exposed to hydrogen peroxide, a similar pattern of lower packed cell volume, RBC, Hb, and heterophil counts was observed in an increasing order and in a dose-dependent manner. In addition, WBC counts and lymphocytes were significantly

higher in *C. gariepinus* groups exposed to hydrogen peroxide in an increasing order and in a dose-dependent manner. Furthermore, in *C. gariepinus* groups exposed to sodium chloride, a similar pattern of moderately lower packed cell volume, RBC, Hb, and heterophil counts were observed in an increasing order and in a dose-dependent manner. In addition, WBC counts and lymphocytes were moderately higher in *C. gariepinus* groups exposed to sodium chloride in an increasing order and in a dose-dependent manner. The haematological profile of *C. gariepinus* groups exposed to chlorine and hydrogen peroxide was parallel to the fish exposed to sodium chloride. However, this showed that chlorine, hydrogen peroxide, and sodium chloride, exhibited a comparable toxicological effect on exposed *C. gariepinus* groups.

The haematology results observed in this study showed that lowest concentration of the three selected disinfectants exposed to *C. gariepinus* caused a slight increase in white blood cell counts. In contrast sodium chloride showed lower significant white blood cell counts. The highest concentration of the hydrogen peroxide showed a significant high increase in white blood cell counts compared to chlorine and sodium chloride. This is an indication of the high toxicity of the disinfectant on *C. gariepinus*. An increase in antibody production as a result of exposure of fish to pathogens or toxicants is related to an increase in white blood cell counts. This increase is due to release from spleen to counter the diseases or toxicants. In addition, intrusion with the immune system is caused by antibodies production due to chemical compounds in insecticides (Chen and Luo 2023).

The groups of *C. gariepinus* exposed to highest concentration of the disinfectants showed decreased level of red blood cell count. This implies haemolysis and damage to red blood cell membrane. This subsequently led to fast replacement of dead red blood cells due to anaemia to avoid cell shrinkage as a result of osmotic alterations of blood (Ismail 2022). Moreover, significant increase in RBC, WBC, HGB, and HCT may be observed in fish after occurrence of hypoxia (Dagoudo et al 2021). Red blood cell is important in oxygen transport to cells and elevated RBC counts ensure that cells continue to receive adequate oxygen for metabolism. Previous studies showed that extreme hypoxia can cause reduced activity and this might be a reflection of the differences in blood respiratory functions of different species (Pei et al 2021, Obirikorang et al 2025).

The results of this study showed a relationship between disinfectant exposure and the induction of micronucleus (MN) in the red blood cells of fish. Occurrence of micronuclei was reported in different fish organs. Micronuclei were associated with environmental factors as well as the rate of cell proliferation (Altwaijry et

al 2023). The effect acute concentrations of all three disinfectants on haematology in this study may be related to induction of varying degrees of nuclear abnormalities (NA). Exposure of fish to toxicants and disinfectants in fish can cause nuclear abnormalities as a result of response to genotoxic agents (Akeredolu et al 2023).

Moreover, high level of bioaccumulation of disinfectants in fish available for consumption has raised a public health concern. This bioaccumulation is mostly depended on application of disinfectants in fresh water bodies (Rose 2023) and their use as a source of domestic water supply (Yeşilbudak 2024). Meanwhile, previous studies showed that human exposures to disinfectant are associated with reproductive and developmental defects. The defects may include immunological abnormalities and hematopoietic cancers (Lafta et al 2024). The exposure time of disinfectants was reported to have a relationship with incidence of cancers in humans. The most important one is brain and prostate cancers (Zhang et al 2025). The toxic effects of disinfectant in humans may also be due to their ability to impair anti-oxidative defense by altering redox equilibria (Kunst et al 2023). This might lead to chromosomal aberrations expressed as micronuclei observed in the erythrocytes of the fishes. This might be observed at acute and sub-cellular levels. The findings of this study showed that sodium chloride produced less mutagenic threat on the fish haematology compared to the other disinfectants investigated. This infer the use of sodium chloride for toxicity control, growth enhancement and parasite treatment in freshwater aquaculture. Though, the effects of sodium chloride may vary among species and concentrations (Tavares-Dias 2022).

CONCLUSION

The acute toxic effects and alteration of haematological parameters in *C. gariepinus*, observed for all disinfectants assessed, imply that chemicals commonly used for disinfection remain a serious health concern to aquatic organisms. In view of the toxicity of disinfectants to fish, it is important to consider the quantity or amount of concentration to minimize the risk of intoxication of fish through inhalation into their gills, exposure to their skin, and ingestion while feeding. More than ever, as global populations and food demands rise, increased attention needs to be focused on formulating environmentally friendly, more target-specific, and fast-degrading disinfectants to mitigate the potential negative consequences on fish.

DECLARATIONS

Competing Interests

The authors did not report any conflict of interest or financial support

Availability of Data and Materials

The data that support the findings of this study are available on request from the corresponding author.

Ethical Statement

Handling of experimental Fish, Ethical clearance, and valid approval were obtained from the Animal Care and Use Research and Ethics Committee (ACUREC) of the University of Ibadan in order to use animals for our studies on disinfectants (NHREC/ UIACUREC/05/12/2022A).

Author Contributions

Motivation/Concept: AOA, ORA; Design: AOA, ORA; Control/Supervision: AOA, ORA; Data Collection and Processing: IJN; Analysis and Interpretation: IJN, ORA, AOA; Literature Review: ORA; Writing the Article: ORA, AOA; Critical Review: AOA

ORCID

AOA: <https://orcid.org/0000-0001-7978-3439>
 ORA: <https://orcid.org/0000-0002-8150-3886>
 IFN: <https://orcid.org/0009-0009-0217-1480>

REFERENCES

Achilike N, Wusu A, 2019. Hematological profile of *Clarias gariepinus* reared in different culture system. *J Agri Env*, 15(1), 165-177. <https://doi.org/10.4314/jagrenv.v15i1>

Adeshina I, Emikpe BO, Jenyo-Oni A, Ajani EK, et al., 2020. Haematology, plasma biochemistry and serum of table size African catfish, *Clarias gariepinus*, naturally infected with *Listeria* species in Oyo State. *Comp Clin Pathol*, 29(3), 69-73. <https://doi.org/10.1007/s00580-019-03034-6>

Adeyemi J, Atere T, Oyedara O, Olajide OK, et al., 2014. Hematological assessment of health status of African catfish *Clarias gariepinus* (Burchell 1822) experimentally challenged with *Escherichia coli* and *Vibrio fischeri*. *Comp Clin Pathol*, 22(3), 1309-1313. <https://doi.org/10.1007/s00580-013-1780-y>

Akeredolu OE, Ekele SA, Olaleru F, Egonmwan RI, 2022. Acute and sub-lethal toxicity in African mud catfish (*Clarias gariepinus*, Burchell, 1822) exposed to some pesticides. *The Zoologist (The)*, 20(1), 51-60. <https://doi.org/10.4314/tzool.v20i1.7>

Altwaijry N, Khan MS, Shaik GM, Tarique M, Javed M, 2023. Redox status, immune alterations, histopathology, and micronuclei induction in *Labeo rohita* dwelling in polluted river water. *Arch of Environ Contam Toxicol*, 84(2), 179-187. <https://doi.org/10.1007/s00244-022-00976-x>

Anifowose OR, Oladosu GA, Omotosho OO, 2024a. Occurrence and characterization of *Proteus mirabilis* from infected farmed African catfish in Ogun State, Nigeria. *Mol Biol Rep*, 51(1), 1-6. <https://doi.org/10.1007/s11033-023-08973-6>

Anifowose OR, Adeoye BO, Olayiwola AO, 2024b. Pathogenicity and antibiotic susceptibility pattern of *Enterococcus faecalis* in *Clarias gariepinus* juvenile. *IJOAC*, 8(2), 1-6. <https://doi.org/10.23880/ijiac-16000303>

APHA 1995, Standard Methods for the Examination of Water and Waster Water, 19th Edition, American Public Health Association Washington DC.

Banerjea SM, 1967. Water quality and soil condition of fishponds in some states of India in relation to fish production, *Indian J of Fish*, 14, 115 -144. https://doi.org/10.1007/978-94-011-0958-1_22

Bhatnagar A, Garg SK, 2000. Causative factors of fish mortality in still water fish ponds under sub-tropical conditions, *Aquac*, 1(2), 91 – 96.

Bhatnagar A, Jana SN, Garg SK, Patra BC, et al., 2004. Water quality management in aquaculture, course manual of a summer school on the development of sustainable aquaculture technology in fresh and saline waters. *CCS Hau*, 203 – 210.

Bhujel RC, 2024. Global aquatic food production. In *Aquatic food security* (pp. 99-126). GB: CABI. <https://doi.org/10.1079/9781800629004.0006>

Bögner D, Bögner M, Schmachtl F, Bill N, et al., 2021. Hydrogen peroxide oxygenation and disinfection capacity in recirculating aquaculture systems. *Aquac Eng*, 92, 102140. <https://doi.org/10.1016/j.aquaeng.2020.102140>

Bojarski B, Witeska M, Kondera E, 2025. Blood Biochemical Biomarkers in Fish Toxicology—A Review. *Animals*, 15(7), 965. <https://doi.org/10.3390/ani15070965>

Buchmann K, 2022. Neutrophils and aquatic pathogens. *Parasite Immunol*. 2022; 44:e12915. <https://doi.org/10.1111/pim.12915>

Chen H, Luo D, 2023. Application of haematology parameters for health management in fish farms. *Rev Aquac*, 15(2), 704-737. <https://doi.org/10.1111/raq.12753>

Dauda A, Natrah FMI, Karim M, Kamarudin MS, 2018. African catfish aquaculture in Malaysia and Nigeria: Status, trends and prospects. *Fish Aquac J*, 9(1), 1-5. <https://doi.org/10.4172/2150-3508.1000237>

D'Agostini F, La Maestra S 2021. Micronuclei in fish erythrocytes as genotoxic biomarkers of water pollution: an overview. *Rev Environ Contam and Toxicol*, Volume 258, 195-240. https://doi.org/10.1007/398_2021_76

Dagoudo M, Qiang J, Bao JW, Tao YF, et al., 2021. Effects of acute hypoxia stress on hemato-biochemical parameters, oxidative resistance ability, and immune responses of hybrid yellow catfish (*Pelteobagrus fulvidraco* × *P. vachelli*) juveniles. *Aquac Int*, 29(5), 2181-2196. <https://doi.org/10.1007/s11259-022-10062-1>

Dinesh R, Anand C, John KR, George MR, et al., 2022. An overview of chemicals and drugs in aquaculture disease management. *Indian J Anim Health*, 62(1), 1-20. <https://doi.org/10.36062/ijah.2022.05222>

Ekici M, Takci A, Kivrak MB, 2021. Comparison of some hematological and serum biochemical variables in Kangal Akkaraman, Texel and Île De France ewes in lactation period within Sivas province. *Eurasian J Vet Sci*, 37(4), 296-302. <https://doi.org/10.15312/EurasianJVetSci.2021.355>

Ekubo AA, Abowei JFN, 2011. Review of some water quality management principles in culture fisheries. *RJASET* 3(2): 1342–1357

Flerova, EA. Balabanova, LV. 2013. Ultrastructure of granulocytes of teleost fish (Salmoniformes, Cypriniformes, Perciformes). *J Evol Biochem Physiol*, 49, 223–233. <https://doi.org/10.1134/S0022093013020126>

Haenen OL, Dong HT, Hoai TD, Crumlish M, et al., 2023. Bacterial diseases of tilapia, their zoonotic potential and risk of antimicrobial resistance. *Rev Aquac*, 15, 154-185. <https://doi.org/10.1111/raq.1274>

Ismail HTH, 2022. Toxic impact of exposure to calcium hypochlorite and granular activated carbon on African catfish (*Clarias*

gariepinus): a study of the alterations in hemato-biochemical profile and oxidative indices. *Int J Vet Sci*, 11(2), 129-140. <https://doi.org/10.47278/journal.ijvs/2021.082>

Kolawole AS, Iyiola AO, 2021. Acute toxicity of calcium hypochlorite (65% chlorine disinfectant) on the liver, brain, and gill of *Clarias gariepinus* fingerlings (Burchell, 1822). *Proceedings of the Nigerian Academy of Science*, 13(2).

Kunst C, Schmid S, Michalski M, Tümen D, et al., 2023. The influence of gut microbiota on oxidative stress and the immune system. *Biomed*, 11(5), 1388. <https://doi.org/10.3390/biomedicines11051388>

Lafta MH, Afra A, Patra I, Jalil AT, Mohammadi MJ, Baqir Al-Dhalimy AM, Asban P, 2024. Toxic effects due to exposure heavy metals and increased health risk assessment (leukemia). *Rev Environ Health*, 39(2), 351-362. <https://doi.org/10.1515/reveh-2022-0227>

Latief L, Gilbert BM, Avenant-Oldewage A, 2024. Effects of water quality on fish parasite biodiversity and physiological responses in the host fish *Clarias gariepinus* from a eutrophic lake subjected to acid mine drainage in South Africa, *IEAM*, 20(5), 1539-1553. <https://doi.org/10.1002/eam.4885>

Newman SG, 2021. Disinfectant use in Aquaculture, an Underappreciated Element of Biosecurity?. In *The Shrimp Book II* (pp. 562-576). GB: CABI. <https://doi.org/10.1079/9781800629363.0024>

Obirikorang KA, Viala EA, Akrokok J, Mensah DK, et al., 2025. Air-breathing behaviour of the African catfish (*Clarias gariepinus*) in response to different hypoxia, hypercapnia and temperature regimes. *Environ Biol Fishes*, 1-14. <https://doi.org/10.1007/s10641-025-01684-w>

OECD, 2019. OECD Test Guideline 203. Fish, Acute Toxicity Test. OECD Guidelines for the Testing of Chemicals, Section 2. OECD Publishing, Paris (2019).

Olagunju O, 2024. Economic Assessment of Catfish Farming in Nigeria.

Pei X, Chu M, Tang P, Zhang H, et al., 2021. Effects of acute hypoxia and reoxygenation on oxygen sensors, respiratory metabolism, oxidative stress, and apoptosis in hybrid yellow catfish "Huangyou-1". *Fish Physiol Biochem*, 47(5), 1429-1448. <https://doi.org/10.1007/s10695-021-00989-8>

Pulido-Reyes G, Martin-Moreno G, Gomez-Gomez B, Navas JM et al., 2024. Fish acute toxicity of nine nanomaterials: Need of pre-tests to ensure comparability and reuse of data. *Environ Res*, 245, 118072. <https://doi.org/10.1016/j.envres.2023.118072>

Remilekun AO, Akinola OG, Olubusola OO, 2021. Causal factors of mass mortality of hatchery-reared *Clarias gariepinus* fry during exogenous feeding. *Int J Fish Aquat Stud*, 9(1), 235-239.

Rose M, 2023. Pollutants, residues and other contaminants in foods obtained from marine and fresh water. In *Present knowledge in food safety* (pp. 128-141). Academic Press. <https://doi.org/10.1016/B978-0-12-819470-6.00040-8>

Saini VP, Singh AK, Paul T, Thakur A, et al., 2024. Advances in environment management for sustainable fisheries & livestock production.

Solis NB, 1988. The Biology and Culture of *Penaeus Monodon*, Department papers. SEAFDEC Aquaculture Department, Tigbouan, Boilo Philippines, 3-36.

Tavares-Dias M, 2022. Toxicity, physiological, histopathological, handling, growth and antiparasitic effects of the sodium chloride (salt) in the freshwater fish aquaculture. *Aquac Res*, 53(3), 715-734. <https://doi.org/10.1111/are.15616>

Witeska M, Kondera E, Bojarski B, 2023. Hematological and hematopoietic analysis in fish toxicology—A review. *Animals*, 13(16), 2625. <https://doi.org/10.3390/ani13162625>

Xu Z, Cao J, Qin X, Qiu W, et al., 2021. Toxic effects on bioaccumulation, hematological parameters, oxidative stress, immune responses and tissue structure in fish exposed to ammonia nitrogen: a review. *Animals*, 11(11), 3304. <https://doi.org/10.3390/ani11113304>

Uçar A, 2024. LC50 Determination and Probit Analysis. In *Aquatic Toxicology in Freshwater: The Multiple Biomarker Approach*, 95 – 105. Cham: Springer Nature Switzerland.

Yeşilbudak B, 2024. Toxic Effects of Disinfectants on Aquatic Organisms. *KUBFD*, 4(1), 270-284.

Zhang S, Tang H, Zhou M, 2025. The association between blood trihalomethane concentrations and high risk for prostate cancer: A nationally representative cross-sectional study. *Sci Total Environ*, 996, 180140.