

RESEARCH ARTICLE**Gender Determination of Foramen Magnum and Occipital Condyles in Dogs Using Computed Tomography****Sedat Aydogdu^{1,(*)}, Yusuf Altundag², Muhammed Taha Temir³**¹Selcuk University, Faculty of Veterinary Medicine, Department of Anatomy, Konya, Türkiye²Namik Kemal University, Faculty of Veterinary Medicine, Department of Surgery, Tekirdağ, Türkiye³Istanbul University-Cerrahpasa, Faculty of Veterinary Medicine, Department of Radiology, İstanbul, Türkiye**Abstract**

The foramen magnum (FM) and occipital condyles (OC) are important anatomical features in anthropology and zooarchaeology for the identification of breeds, species, and gender. The present study aimed to determine the gender of dogs using morphometric measurements of the FM and OC. A total of 27 healthy dogs without any pathology, 11 females and 16 males, were used in this study. Morphometric measurements were performed on tomography images of the dogs' heads. Before morphometric measurements were made on the images obtained in DICOM (Digital Imaging and Communications in Medicine) format, interactive MPR (Multi-Planar Reformat) and positioning were performed in ITK-SNAP software. After rotation and positioning, eight different morphometric measurements were performed on the FM and OC using ITK-SNAP software. According to the morphometric measurement results, no statistical difference was determined in the length of the right OC (LROC), length of the left OC (LLOC), width of the right OC (WROC), width of the left OC (WLOC), intercondylar width (ICW), intercondylar distance (ICD), and internal width of the FM (IWMF) in female and male dogs. A difference was observed in the internal length of the FM (ILFM) parameter, which was found to be statistically significantly higher in males. It is thought that the morphometric measurement results obtained from the FM and OC of dogs will contribute to zooarchaeological and anthropological studies examining the differences between gender and head structure in dogs.

Keywords: Computed tomography, dog, foramen magnum, morphometric measurement, occipital condyles

(*) Corresponding author:Sedat Aydogdu
saydogdu@selcuk.edu.tr**Received:** 09.09.2025**Accepted:** 13.01.2026**Published:** 05.02.2026**How to cite this article?**

Aydogu S, Altundag Y, Temir MT
2025. Gender Determination of
Foramen Magnum and Occipital
Condyles in Dogs Using Computed
Tomography. Eurasian J Vet Sci, 42,
e0471.

INTRODUCTION

The bones that form the skull consist of two groups: neurocranium and viscerocranium. The viscerocranium contains the initial parts of the digestive and respiratory systems. Neurocranium, whose primary function is to protect the brain, also contains the middle and inner ear. The occipital bone, located caudally from the neurocranium bones, articulates with the atlas, the first vertebra (König et al 2004, Dyce et al 2010). The parts of the occipital bone form the foramen magnum (FM), a sizeable ring-shaped opening that connects the cranial cavity to the vertebral canal (König et al 2004, Akbaş et al 2023). The spinal cord is connected to the brain through the FM. In addition, the passage of the meninges, vertebral venous sinuses, and basilar artery make the FM very important in neurosurgical practice (Evans and De Lahunta 2012).

Anthropology, comparative anatomy, archeology, and

neurosurgery are interested in the shape and anatomical features of the FM and occipital condyles (OC). It is also reported that the morphological structures of the FM and OC have changed and are of anthropological interest (Muthukumar et al 2005, Pires et al 2016, Ruth et al 2016, Law et al 2018, Aida et al 2020, Akbaş et al 2023). It is known that the FM and OC in dogs vary significantly between breeds. In most cases, the transverse diameter of the FM is larger. However, in some skulls, the width and height of the FM have been observed to be equal. Some dog breeds may have developmental disorders in this area. These disorders can cause neurological symptoms, such as parts of the brain bulging from the FM (Getty 1975, De Lahunta et al 2014, Czubaj et al 2015, Kupczyńska et al 2017). Similarly, in some dog breeds, the dorsal extension of the FM creates a dorsal notch that resembles a keyhole. This dorsal notch, defined as occipital dysplasia, is also evaluated as a morphological variation in terms

This article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)

of anatomy in some cases (Wright 1979, Simoens et al 1994, Evans and De Lahunta 2012, Onar et al 2013, De Lahunta et al 2014). These irregularities observed in the shape and size of the FM are defined as malformation (De Lahunta et al 2014).

The FM is important for cerebrospinal fluid circulation, and if it becomes blocked, it may cause syringomyelia. Occipital bone hypoplasia is one of the most common causes of syringomyelia (Rusbridge et al 2000). Malformation of the basis and supraoccipital bone may cause a decrease in the volume of the caudal fossa and the spinal cord to displace dorsally, with the vermis passing through the FM (Rusbridge and Knowler 2006).

Morphometric measurements obtained from the skull are frequently used to determine gender, breed, and species dimorphism in mammals. One of the most important of these measurements is the findings obtained from the FM and OC (Onar et al 2001, Uddin et al 2013, Saber and Gummow 2015, Akbaş et al 2023, Gundemir et al 2023a, Gundemir et al 2023b, Duro et al 2025, Gundemir et al 2025, Gundemir and Szara 2025).

Different methods are used when performing morphometric measurements. In addition to the conventional measurement method using digital calipers, in recent years, measurements have also been made on computed tomography (CT) images. Morphometric measurements were performed on the skull, including measurements of the FM using digital calipers in dogs (Onar et al 2002, García-Real et al 2004, Baranowski 2010, Janeczek and Chrószcz 2011, Onar et al 2012, Saber and Gummow 2015, Bennett and Timm 2018, İlgün et al 2022, Güzel et al 2023, Koçyiğit and Demircioğlu 2024, Koçyiğit et al 2024a, Koçyiğit et al 2024b). In recent years, in addition to these methods, morphometric measurements are also being performed on 3D models obtained using computed tomography images (Bakıcı et al 2022, Selcuk 2023).

There are also measurements focusing directly on the FM and the occipital region in dogs (Janeczek et al 2008, Onar et al 2013, Kilroy and Kumar 2015, Kupczyńska et al 2017). Morphometric measurements were performed on the FM and OC in American Staffordshire Terriers (Chrószcz et al 2006, Janeczek et al 2011), Nigerian local breed (Igando and Ekeolu 2014, Danmaigoro and Mahmud 2022), Cavalier King Charles spaniels (Schmidt et al 2012), small and toy breeds (Baroni et al 2011, de Sousa Júnior et al 2022), Pekingese (Simoens et al 1994), German Shepherd (Onar et al 1997), Kangal (Onar et al 2001), Ghanaian local dog (Opoku-Agyemang et al 2020) and Egyptian Baladi (Mahdy and Mohamed 2022).

More detailed measurements are made using CT compared to conventional morphometric measurements made with digital calipers. The motivation for the study is that information on morphometric measurements in the FM and OC using CT in dogs is limited. The study aims to perform morphometric measurements in the FM and OC in dogs using CT. Additionally, the relationship between age and weight with morphometric measurements obtained from FM and OC was examined.

MATERIAL AND METHODS

Study Population

A total of 27 healthy dogs (mesaticephalic and dolichocephalic), 11 female and 16 male, were used in the study. The female dogs aged from 1 to 13 years (mean age 6.18 years), and male dogs from 1 to 13 years (mean age 7.44 years) were used in the study. The average weight of female dogs was 19.55 kg, and that of male dogs was 25.25 kg. CT images of dogs without any pathological condition were obtained from archive images, the Animal Hospital of the Faculty of Veterinary Medicine, Istanbul University-Cerrahpaşa. The dogs' heads were scanned in recumbency using a multi-detector Siemens (Somatom Scope vc30b) CT device. CT images of dog heads with 110 kV, 28 mA, and 0.6 mm slice thickness were obtained. Images stored in DICOM (Digital Imaging and Communications in Medicine) format were transferred to open-source ITK-SNAP software (Yushkevich et al 2006). Morphometric measurements of the FM and OC were performed using ITK-SNAP software.

Morphometric Measurements of FM and OC

Morphometric measurements of the FM and OC were performed using CT images. CT images were positioned with interactive MPR before linear measurements were performed (Figure 1).

The morphometric measurements shown in Figure 2 and mentioned below were performed (Simoens et al 1994, Onar et al 1997, Onar et al 2001, Chrószcz et al 2006, Janeczek et al 2008, Baroni et al 2011, Janeczek et al 2011, Schmidt et al 2012, Onar et al 2013, Igando and Ekeolu 2014, Kilroy and Kumar 2015, Kupczyńska et al 2017, Opoku-Agyemang et al 2020, Ramos et al 2021, Danmaigoro and Mahmud 2022, de Sousa Júnior et al 2022, Mahdy and Mohamed 2022, Akbaş et al 2023, Gundemir et al 2023a).

LROC: Length of the right OC; LLOC: Length of the left OC; WROC: Width of the right OC; WLOC: Width of the left OC; ICW: Intercondylar width; ICD: Intercondylar distance; ILFM: Internal length of the FM; IWFM: Internal width of the FM.

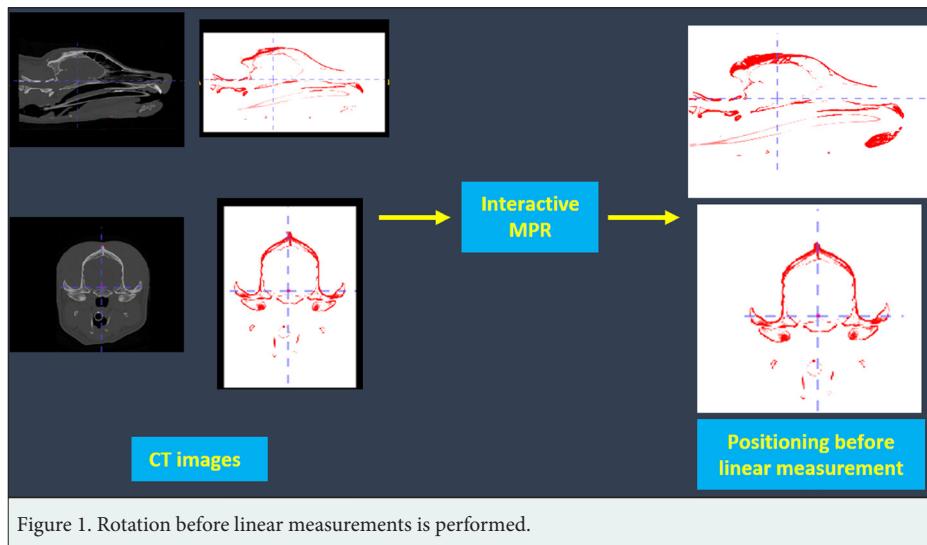


Figure 1. Rotation before linear measurements is performed.

In addition, the FM index (FMI) was calculated according to the following equation: $FMI = (MWFM/MLFM) * 100$

Statistical analysis

Statistical analysis was performed using the software SPSS 29 statistics software. Homogeneity and normality of variances were tested using Levene's test and Shapiro-Wilk. In a gender comparison, the Student's t-test was used in cases where parametric test prerequisites were met, and the Mann-Whitney U test was used in cases where they were not met. The relation between measurements obtained from the FM and OC was examined using Pearson's correlation.

RESULTS

Morphometric measurements were performed using CT images obtained from female and male dogs. Morphometric measurements and FMI obtained from the FM and OC in dogs are presented in Table 1.

Eight different morphometric measurements and an index calculation were performed on the FM and OC. In all measurements obtained, the average values from males were higher. A statistical difference was observed in the ILFM value. It was determined that this measurement parameter was higher in males. In other measurements, no statistical difference was found between male and female dogs. It was observed that the FM index was higher in female cats, but it did not create a statistical difference.

The correlation between the morphometric measurements obtained from the dog the FM and OC is presented in Table 2. In the correlation between morphometric measurements, moderate, strong, and very strong relationships were taken into account. The relationship between age and weight on measurements was investigated.

The highest correlation with age and morphometric measurements was observed with WROC and WLOC. However, no statistical difference was observed between

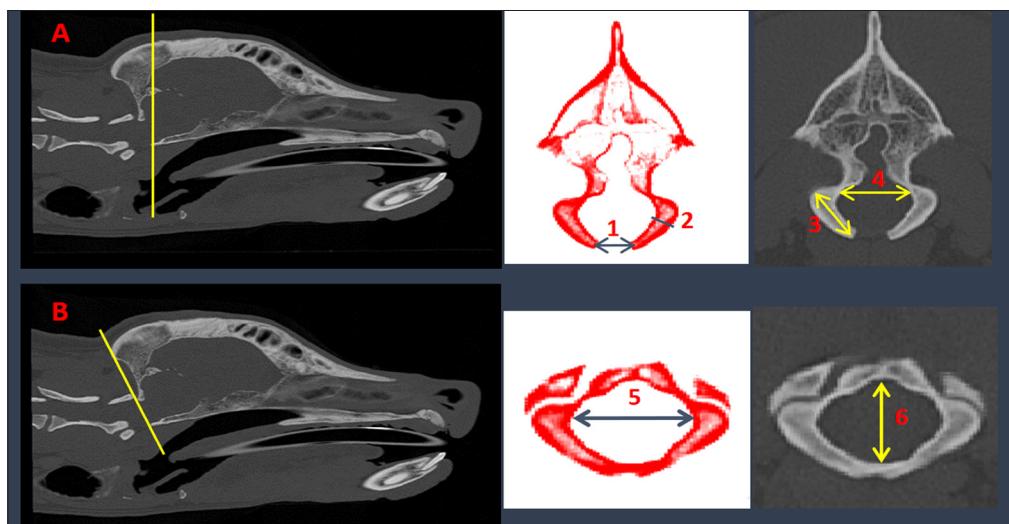


Figure 2. Measurements performed at the OC (A) and FM (B). Intercondylar distance (1); Width of the left OC (2); Length of the right OC (3); Intercondylar width (4); Internal width of the FM (5); Internal length of the FM (6).

Table 1. Morphometric measurements obtained from the FM and OC							
	Female (n=11)			Male (n=16)			
Measurements	Min	Max	Mean ± SD	Min	Max	Mean ± SD	
LROC	10.37	17.23	14.25±2.17	11.81	19.78	15.73±2.79	0.155 ^e
LLOC	10.08	17.43	14.13±2.36	12.33	18.84	15.63±2.38	0.118 ^e
WROC	4.14	6.76	5.52±0.87	4.01	8.22	5.93±1.34	0.392 ^e
WLOC	4.14	6.75	5.57±0.84	3.92	8.56	6.16±1.59	0.277 ^e
ICW	13.96	19.41	16.46±2.15	14.27	21.04	17.45±2.07	0.245 ^e
ICD	7.21	13.93	10.26±1.97	8.83	13.98	11.41±1.55	0.105 ^e
ILFM	11.25	15.39	13.74±1.35	13.44	16.81	14.82±1.06	0.027 ^{e*}
IWFM	14.74	20.98	17.75±1.71	15.48	21.56	18.62±1.88	0.233 ^e
FMI	117.38	144.69	129.53±9.01	110.49	145.48	125.60±8.84	0.270 ^e

^eStudent's t-test, * p<0.05. LROC, Length of the right OC; LLOC, Length of the left OC; WROC; Width of the right OC; WLOC, Width of the left OC; ICW, Intercondylar width; ICD, Intercondylar distance; ILFM, Internal length of the FM; IWFM, Internal width of the FM; FMI, FM index.

age and the measurements. A positive correlation was found between weight and all morphometric measurements. The highest correlation between weight and measurements was determined in IWFM. The lowest correlation between weight and morphometric measurements was observed in ICD. A positive correlation was observed between all morphometric measurements obtained from the FM and OC in dogs. The highest correlation was determined to be in the maximum length and width obtained from the OC.

DISCUSSION

The FM is important in veterinary clinical practice, forensic medicine, species identification, and gender determination (König et al 2004, Akbaş et al 2023). Non-invasive studies using imaging techniques prevent

the need for animal sacrifice. CT is an important and frequently used technique that provides the most reliable and accurate results (Akbaş et al 2023).

Due to the variations observed in anatomy, and morphological features of the FM, it is particularly studied in the fields of anatomy, anthropology, and zooarchaeology. The size and shape of the FM in dogs vary considerably depending on head structure (Muthukumar et al 2005, Pires et al 2016, Ruth et al 2016, Law et al 2018, Aida et al 2020, Akbaş et al 2023).

In our study, the morphometric parameters of the FM and OC were evaluated in dogs. In most cases in dogs, the IWFM value is higher than the ILFM. In most dogs, the IWFM value is greater than the ILFM. In dogs with a dorsal notch, the ILFM value is higher (Getty 1975, Wright 1979,

Table 2. Correlations between morphometric measurements and age/weight.											
	Age	Weight	LROC	LLOC	WROC	WLOC	ICW	ICD	ILFM	IWFM	FMI
Age	1										
Weight	0.396	1									
LROC	0.113	0.625**	1								
LLOC	0.159	0.649**	0.964**	1							
WROC	0.255	0.738**	0.887**	0.879**	1						
WLOC	0.255	0.733**	0.905**	0.894**	0.964**	1					
ICW	0.064	0.624**	0.771**	0.803**	0.770**	0.792**	1				
ICD	0.133	0.579*	0.773**	0.799**	0.798**	0.741**	0.739**	1			
ILFM	0.231	0.643**	0.713**	0.753**	0.675**	0.672**	0.734**	0.634**	1		
IWFM	0.102	0.745**	0.837**	0.839**	0.838**	0.801**	0.844**	0.740**	0.724**	1	
FMI	-0.145	0.241	0.279	0.231	0.324	0.278	0.260	0.241	-0.246	0.489	1

*p<0.05, **p < 0.01. LROC, Length of the right OC; LLOC, Length of the left OC; WROC; Width of the right OC; WLOC, Width of the left OC; ICW, Intercondylar width; ICD, Intercondylar distance; ILFM, Internal length of the FM; IWFM, Internal width of the FM; FMI, FM index.

Simoens et al 1994, Evans and De Lahunta 2013, Onar et al 2013, De Lahunta et al 2014, Czubaj et al 2015, Kupczyńska et al 2017). In a study using mesaticephalic dogs, the IWF M value was found to be higher in both males and females when the dorsal notch was not present in the materials used. Similarly, IWF M was found to be higher in cats. A gender difference was observed in IWF M and ILFM (Uddin et al 2013, Ramos et al 2021, Akbaş et al 2023). However, in mesaticephalic dogs, a gender difference was found only in ILFM ($p=0.027$). This value was observed to be higher in male dogs.

Morphometric measurements of bones are made using various methods (Onar et al 2001, Uddin et al 2013, Duro et al 2025, Gündemir et al 2025, Gündemir and Szara 2025). Conventional measurement methods using digital calipers are often preferred. However, in recent years, X-ray and CT images have also been used in morphometric measurements (Onar et al 2002, García-Real et al 2004, Baranowski 2010, Janeczek and Chrószcz 2011, Onar et al 2012, Saber and Gummow 2015, Bennett and Timm 2018, İlgün et al 2022, Güzel et al 2023, Koçyiğit and Demircioğlu 2024, Koçyiğit et al 2024a). Measurements made using digital calipers are very important in measuring skulls from archaeological excavations. FM measurements were taken on dog skulls found during the Van-Yoncatepe Necropolis excavations, as well as on skulls from the Iron Age, early medieval, and medieval periods. Similar to the present study, the IWF M value was measured as higher than the ILFM in the dog skulls found in the Van-Yoncatepe Necropolises excavations Iron Age, and medieval dogs. The FMI calculated in both studies was observed to be lower than the value calculated in the current study. This difference is thought to be due to the skulls found in the archaeological excavations belonging to dogs of different breeds and with different head lengths (Onar et al 2002, Janeczek et al 2008, Baranowski 2010, Janeczek and Chrószcz 2011). IWF M values in early medieval short-snout and medium-snout dogs were found to be consistent with the present findings. It was stated that the values of LROC and LLOC were higher in short-snout dogs (Baranowski 2010). The values obtained from the ILFM and IWF M measurements in the FM of Byzantine dolichocephalic and mesaticephalic dogs were found to be very close to the present study (Onar et al 2013). In the measurements made using digital caliper from the FM in Aksaray Malakli, the ILFM value was determined to be higher than the IWF M. In the current study, IWF M values were measured higher in both female and male dogs (İlgün et al 2022). This difference is thought to be because no dorsal notch was found in the dogs measured in the study, but a dorsal notch was observed in the skull of Aksaray Malakli. Morphotypes of the FM were studied in different breeds

of dogs with constitutional types of small, medium, large, and giant. In the study investigating the presence of the dorsal notch, it was stated that the dorsal notch was less frequently encountered in the medium-sized breed dog group. The presence of a dorsal notch was not observed in the dogs used in the present study.

Similar to the present study, higher IWF M values were found in morphometric measurements of FM in American Staffordshire Terriers, Nigerian local breed, small and toy breeds, Pekingese, German Shepherd, Ghanaian local dog and Egyptian Baladi (Onar et al 1997, Baroni et al 2011, Janeczek et al 2011, Igado and Ekeolu 2014, Opoku-Agyemang et al 2020, Danmaigoro and Mahmud 2022, Mahdy and Mohamed 2022). ILFM and IWF M values were compared in terms of gender in Aksaray Malakli, Nigerian Local, and German Shepherd. While no difference was observed in Aksaray Malakli and German Shepherds, a difference in IWF M was observed in Nigerian local dogs. This value was observed to be higher in female Nigerian local dogs (Onar et al 1997, Igado and Ekeolu 2014). In the current study, a difference in ILFM was observed, and it was measured higher in males. In addition to measurements made directly on the FM of dog skulls using digital calipers, measurements were also made on X-ray and CT, similar to the present study (Baroni et al 2011, Güzel et al 2023).

The use of certain head structures (mesaticephalic and dolichocephalic) breeds in the current study and the possible effects on cranial morphology constitute the limitation of the study. Future studies directly involving specific breeds are expected to provide more specific data and contribute significantly to the literature in this field.

CONCLUSION

Morphometric examination of the FM and OC, two important structures of the skull, was performed using CT. The FM plays an important role in comparative anatomy, anthropology, and surgery due to its shape and anatomical features. Eight different morphometric measurements and an index calculation were performed in dogs using CT. In the morphometric measurements, a difference was observed in terms of gender in ILFM (Internal length of the FM). It is thought that the findings obtained in the present study can be compared with findings obtained from dogs with different cranial constitutional types and can be used in the identification of dog skulls found in archaeological excavations.

DECLARATIONS

Competing Interests

Authors declares that there are no conflicts of interest related to the publication of this article.

Availability of Data and Materials

The data that support the findings of this study are available on request from the corresponding author.

Ethical Statement

Istanbul University-Cerrahpasa Research and Application Center, Animal Experiments Ethics Committee 05.09.2025, 2025/81 Number Ethics Committee Decision.

Author Contributions

Motivation/Concept: SA; Design: YA; Control/Supervision: SA; Data Collection and Processing: YA, MTT; Analysis and Interpretation: SA, YA, MTT; Literature Review: SA; Writing the Article: SA, YA; Critical Review: SA

ORCID

SA: <https://orcid.org/0000-0002-9354-3519>
 YA: <https://orcid.org/0000-0001-6364-7512>
 MTT: <https://orcid.org/0009-0009-3854-0807>

REFERENCES

Aida S-H, Zurifa A, Ilvana H, Senad Š, et al., 2020. Bioanthropological analysis of human occipital condyles using geometric morphometric method. *Saudi J Biol Sci*, 27(12), 3415-3420. <https://doi.org/10.1016/j.sjbs.2020.09.019>

Akbaş ZS, Duro S, Yalın EE, Gündemir O, et al., 2023. Detection of sexual dimorphism of the foramen magnum in cats using computed tomography. *Anat Histol Embryol*, 52(4), 595-602. <https://doi.org/10.1111/ahe.12920>

Bakıcı C, Batur B, Akgün RO, Kaya U, et al., 2022. Computer-aided three dimensional morphometric measurements of cervical vertebrae variations compared with manual measurements in through bred horses. *Eurasian J Vet Sci*, 38(1), 41-49. <https://doi.org/10.15312/EurasianJVetSci.2022.363>

Baranowski P, 2010. Morphometric analysis of early medieval dog skulls from Pomerania allowing for forehead position index and dorsal notch of the foramen magnum. *EJPAU*, 13(4), 16-28.

Baroni CO, Pinto ACBdCF, Matera JM, Chamone CMK, et al., 2011. Morphology and morphometry of the foramen magnum in Toy Poodle and Yorkshire terrier dogs. *Cienc Rural*, 41, 1239-1244.

Bennett D, Timm RM, 2018. The dogs of Roman Vindolanda, Part III: Quantifying juvenilization and pleiotropic effects of miniaturization. *Archaeofauna*, 27(1), 57-82. <https://doi.org/10.1536/archaeofauna2018.27.004>

Chrószcz A, Janeczek M, Wojnar M, Pospieszny N, 2006. Morphological analysis and morphometry of the foramen magnum of the American Staffordshire terrier breed newborns. *Med Weter*, 62(9), 1002-1004.

Czubaj N, Skibniewski M, Barszcz K, Sokołowski W, 2015. Clinical anatomy of syringomyelia and chiari malformation in dogs. *Med Weter*, 71, 146-151.

Danmaigoro A, Mahmud M, 2022. Morphology and morphometry of the foramen magnum in selected Nigerian local breed dogs. *FUDMA-JATT*, 8(1), 227-231.

De Lahunta A, Glass E, Kent M, 2014. Veterinary Neuroanatomy and Clinical Neurology, 5th edition, Elsevier, Saunders, pp; 1-221

de Sousa Júnior EL, Medeiros GX, de Melo Gomes IM, de Oliveira SL, et al., 2022. Foramen magnum in dogs of small and toy breeds-morphometric study. *Acta Sci Vet*, 50, 1874. <https://doi.org/10.22456/1679-9216.121039>

Duro S, Gündemir O, Hadžiomerović N, Kotrošan, et al., 2025. Morphological and morphometric study of the head skeleton of the Balkan chamois (*Rupicapra rupicapra balcanica* Bolkay, 1925) in the West Balkan area. *Biologia*, 80, 1-14.

Dyce KM, Sack WO, Wensing CJG, 2010. Textbook of Veterinary Anatomy, 4th edition, Elsevier Health Sciences, St. Louis, Missouri, pp; 374-490.

Evans HE, De Lahunta A, 2012. Miller's anatomy of the dog, 4th edition, Elsevier Saunders, China, pp; 84-151.

García-Real I, Kass PH, Sturges BK, Wisner ER, 2004. Morphometric analysis of the cranial cavity and caudal cranial fossa in the dog: a computerized tomographic study. *Vet Radiol Ultrasound*, 45(1), 38-45. <https://doi.org/10.1111/j.1740-8261.2004.04006.x>

Getty R, 1975. Sissons and Grossmann's The Anatomy of the Domestic Animals, 5th edition, Saunders Company, Philadelphia, pp; 182-226.

Gündemir O, Akcasiz ZN, Yilmaz O, Hadžiomerović N, 2023a. Radiographic analysis of skull in Van cats, British shorthairs and Scottish folds. *Anat Histol Embryol*, 52(3), 512-518. <https://doi.org/10.1111/ahe.12909>

Gündemir O, Szara T, Yalın EE, Karabagli M, et al., 2023b. Examination of shape variation of the skull in British Shorthair, Scottish Fold, and Van Cats. *Animals*, 13(4), 1-11. <https://doi.org/10.3390/ani13040614>

Gündemir O, Manuta N, Güzel BC, Bakıcı, C, et al., 2025. Skull morphology in native and non-native cattle breeds in Türkiye. *J Anat*, 247(1), 179-188. <https://doi.org/10.1111/joa.14234>

Gündemir O, Szara T, 2025. Morphological patterns of the European bison (*Bison bonasus*) skull. *Sci Rep*, 15(1), 1418. <https://doi.org/10.1038/s41598-025-85654-3>

Güzel B, Baygeldi B, Demircioglu İ, Ramazan İ, et al., 2023. Craniometric comparisons of the skull of male and female Malaklı dogs using 3-dimensional imaging: a computed tomography (ct) study. *JAPS*, 33(4), 949-957.

Igado O, Ekeolu O, 2014. Morphometric investigation of the occipital area of the adult Nigerian local dogs. *AJBR*, 17(2), 125-128.

İlgün R, Özüdoğru Z, Karabulut O, Can M, 2022. Macroanatomical and morphometric study on the skull bones of Aksaray Malaklı dogs. *Folia Morphol*, 81(1), 157-163. <https://doi.org/10.5603/FM.a2021.0011>

Janeczek M, Chrószcz A, 2011. The occipital area in medieval dogs and the role of occipital dysplasia in dog breeding. *Turk J Vet Anim Sci*, 35(6), 453-458. <https://doi.org/10.3906/vet-1012-672>

Janeczek M, Chrószcz A, Czerski A, 2011. Morphological investigations of the occipital area in adult American Staffordshire Terriers. *Anat Histol Embryol*, 40(4), 278-282. <https://doi.org/10.1111/j.1439-0264.2011.01071.x>

Janeczek M, Chrószcz A, Onar V, Pazvant G, et al., 2008. Morphological analysis of the foramen magnum of dogs from the Iron Age. *Anat Histol Embryol*, 37(5), 359-361. <https://doi.org/10.1111/j.1439-0264.2008.00854.x>

Kilroy D, Kumar AH, 2015. Dilemma in the diversity of foramen magnum dimensions. *BEMS Reports*, 1(1), 3-6. <https://doi.org/10.5530/BEMS.1.1.2>

Koçyiğit A, Demircioğlu İ, 2024. Comparison of craniometric measurements of New Zealand rabbit (*Oryctolagus cuniculus* L.) using three-dimensional scanner with digital calliper measurements: A methodological study. *Anat Histol Embryol*, 53(2), e13023. <https://doi.org/10.1111/ahe.13023>

Koçyiğit A, Demircioğlu İ, Güzel BC, 2024b. Stereological and computed tomography calculation of intracranial volume in Hamdani sheep. *Anat Histol Embryol*, 53(2), e13021. <https://doi.org/10.1111/ahe.13021>

Koçyiğit A, Demircioğlu İ, Yılmaz O, 2024b. Calculation of intracranial volume in Van cats by stereological method. *Erciyes Üniv Vet Fak Derg*, 21(1), 50-54. <https://doi.org/10.32707/ercivet.1455319>

König HE, Liebich HG, Cerveny C, 2004. Veterinary anatomy of domestic mammals textbook and colour atlas, 3rd edition, Schattauer, Stuttgart, pp; 27-96.

Kupczyńska M, Czubaj N, Barszcz K, Sokołowski W, et al., 2017. Prevalence of dorsal notch and variations in the foramen magnum shape in dogs of different breeds and morphotypes. *Biologia*, 72(2), 230-237.

Law CJ, Duran E, Hung N, Richards E, et al., 2018. Effects of diet on cranial morphology and biting ability in musteloid mammals. *J Evol Biol*, 31(12), 1918-1931. <https://doi.org/10.1111/jeb.13385>

Mahdy MA, Mohamed WF, 2022. Comparative craniometric measurements of two Canid species in Egypt: the Egyptian red fox and the Egyptian Baladi dog. *BMC Vet Res*, 18(1), 173. <https://doi.org/10.1186/s12917-022-03275-8>

Muthukumar N, Swaminathan R, Venkatesh G, Bhanumathy S, 2005. A morphometric analysis of the foramen magnum region as it relates to the transcondylar approach. *Acta Neurochir*, 147, 889-895. <https://doi.org/10.1007/s00701-005-0555-x>

Onar V, Mutuş R, Kahvecioğlu K, 1997. Morphometric analysis of the foramen magnum in German Shepherd dogs (Alsatians). *Anat Anz*, 179(6), 563-568. [https://doi.org/10.1016/S0940-9602\(97\)80022-2](https://doi.org/10.1016/S0940-9602(97)80022-2)

Onar V, Özcan S, Pazvant S, 2001. Skull typology of adult male Kangal dogs. *Anat Histol Embryol*, 30(1), 41-48. <https://doi.org/10.1046/j.1439-0264.2001.00292.x>

Onar V, Armutak A, Belli O, Konyar E, 2002. Skeletal remains of dogs unearthed from the Van-Yoncatepe necropolises. *Int J Osteoarchaeol*, 12(5), 317-334. <https://doi.org/10.1002/oa.627>

Onar V, Çakırlar C, Janeczek M, Kızıltan Z, 2012. Skull typology of Byzantine dogs from the Theodosius Harbour at Yenikapı, Istanbul. *Anat Histol Embryol*, 41(5), 341-352. <https://doi.org/10.1111/j.1439-0264.2012.01143.x>

Onar V, Ince NG, Ince G, Alpak H, et al., 2013. Morphometric analysis of the foramen magnum of byzantine dogs excavated in Istanbul Yenikapı at the site of theodosius harbour. *MAA*, 13(1), 135-142.

Opoku-Agyemang T, Cobbinah ED, Sia D, Springs MS, et al., 2020. The morphometrics and typology of the skull in the Ghanaian local dog of non-descript breed (*Canis lupus familiaris*). *Int J Morphol*, 38(3), 706-713.

Pires LA, Teixeira ÁR, Leite TF, Babinski MA, et al., 2016. Morphometric aspects of the foramen magnum and the orbit in Brazilian dry skulls. *IJMRHS*, 5(4), 34-42.

Ramos J, Viegas I, Pereira H, Requicha JF, 2021. Morphometrical study of the European shorthair cat skull using computed tomography. *Vet Sci*, 8(8), 161. <https://doi.org/10.3390/vetsci8080161>

Rusbridge C, Knowler S, 2006. Coexistence of occipital dysplasia and occipital hypoplasia/syringomyelia in the cavalier King Charles spaniel. *JSAP*, 47(10), 603-606. <https://doi.org/10.1111/j.1748-5827.2006.00048.x>

Rusbridge C, MacSweeny J, Davies J, Chandler K, et al., 2000. Syringohydromyelia in Cavalier King Charles spaniels. *JAAHA*, 36(1), 34-41. <https://doi.org/10.5326/15473317-36-1-34>

Ruth AA, Raghanti MA, Meindl RS, Lovejoy CO, 2016. Locomotor pattern fails to predict foramen magnum angle in rodents, strepsirrhine primates, and marsupials. *JHE*, 94, 45-52. <https://doi.org/10.1016/j.jhevol.2016.01.003>

Saber ASM, Gummow B, 2015. Skull morphometry of the lion (*Panthera leo*), dog (*Canis lupus familiaris*) and cat (*Felis catus*). *J Vet Anat*, 8(1), 13-30. <https://doi.org/10.21608/jva.2015.44849>

Schmidt M, Kramer M, Ondreka N, 2012. Comparison of the relative occipital bone volume between Cavalier King Charles spaniels with and without syringohydromyelia and French bulldogs. *Vet Radiol Ultrasound*, 53(5), 540-544. <https://doi.org/10.1111/j.1740-8261.2012.01955.x>

Selcuk ML, 2023. Computed tomography reconstruction and morphometric analysis of the humerus and femur in New Zealand rabbits. *Eurasian J Vet Sci*, 39(4), 164-170. <https://doi.org/10.15312/EurasianJVetSci.2023.413>

Simoens P, Poels P, Lauwers H, 1994. Morphometric analysis of the foramen magnum in Pekingese dogs. *Am J Vet Res*, 55(1), 34-39.

Uddin M, Sarker M, Hossain M, Islam M, et al., 2013. Morphometric investigation of neurocranium in domestic cat (*Felis catus*). *BJVM*, 11(1), 69-73. <https://doi.org/10.3329/bjvm.v11i1.17302>

Wright JA, 1979. A study of the radiographic anatomy of the foramen magnum in dogs. *JSAP*, 20(8), 501-508. <https://doi.org/10.1111/j.1748-5827.1979.tb06756.x>

Yushkevich PA, Piven J, Hazlett HC, Smith RG, et al., 2006. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. *Neuroimage*, 31(3), 1116-1128. <https://doi.org/10.1016/j.neuroimage.2006.01.015>