Incisor malocclusions in a rabbit

Semih Altan*, Ebru Goksahin

Abstract

Rabbits are the most popular pet animal, but rabbits are generally fed with inappropriate diet. This may cause especially dental disease because all teeth are consistently growing. Anorexic adult male New Zealand white rabbit was presented to surgery clinic. Oral examination and lateral and dorsoventral radiography were made. Blood cell counts, blood gas and some serum biochemical values were determined. Upper and lower incisor malocclusions were observed. Blood cell counts, blood gas and some serum biochemical parameteres were generally within reference range or values of healthy rabbits except low paced cell volume, haemoglobin and calcium level. As a result, rabbits should be routinely examined for dental diseases by veterinarians.

Department of Surgery, Faculty of Veterinary Medicine, Selcuk University, Campus, 42075, Konya, Turkey
Received: 15.12.2010, Accepted: 07.01.2011
*altansemih@yahoo.com

Keywords: Malocclusion, rabbit

Özet

Rabbits may be the most preferred pets and scientific researches animals because they are quiet, docile, gentle and infrequently bite. However clinical signs of disease in rabbits do not observed till severity of illness (Richardson 2000, Altunok et al 2002, Meredith and Crossley 2002, Huerkamp 2003, Fraser 2004, Yazar 2010). Diet is very important for healthy of rodents, but, in generally, they are feed inappropriate diet. Dental disease of rabbits may be depend on hereditary or dietary deficiencies (Girling 2003, Huerkamp 2003, Fraser 2004). Dental formula of rabbit is I 2/1, C 0/0, P 3/2, M 3/3. Rabbit teeth are consistently growing and incisors teeth may grow 10-12.5 cm in a year (Richardson 2000, Girling 2003, Fraser 2004). If rabbits do not eat suitable diet, their teeth may be overgrown. For this reason, they should be regularly gone to veterinarian for oral examination. The aim of this case was shown clinical, radiographic and laboratory findings of New Zealand white rabbit with incisor malocclusion.

An anorexic adult male New Zealand white rabbit (3.8 kg, 18 months) was presented with incisor dental malocclusion. Oral examination was made under sedation. Lateral and dorsoventral radiography were taken, as well. Blood sample was taken from A. auricularis. White blood cell (WBC), red blood cell (RBC) and platelet (PLT) counts were determined with haemocell counts (Medonic-Biobak, Sweden). Blood pH, pCO₂, pO₂, HCO₃⁻, SO₂-C, tCO₂, paced cell volume (PCV), haemoglobin (Hbc) and calcium (Ca++) levels were determined with blood gas analyzer (GenPremier 3000). Serum albumin, alkaline phosphatase, alanine ami
notransferase, amylase, aspartate aminotransferase, cholesterol, creatine kinase-MB, creatinine, gamma glutamyl transferase, high density lipoprotein, lactate dehydrogenase, total protein, triglyceride, blood urea nitrogen, glucose, lactic acid levels were measured with autoanalyzer (Tokyo Boeki Prestige 24i, Japan). Incisor malocclusions were extracted with dog nail trimmer under general anesthesia. Radiograph of rabbit with incisor malocclusion (Fig 1 A and B) and clinical sign (Fig 1 C) are shown in Figure 1. It was observed that upper incisors whorl into oral cavity, while lower incisors grown in a dorsofacial way. WBC, RBC and PLT counts were 4.7 x10³/mm³, 6.31 x10⁹/

Figure 1. Incisor malocclusion in a rabbit (A: dorsoventral radiography, B: Lateral radiography, C: Extracted teeth, D: Clinical visual). a: Lower incisor malocclusion; b: (Upper incisor malocclusion).
mm3 and 360 x103/mm3, respectively. Blood pH, pCO$_2$, pO$_2$, HCO$_3^-$, SO$_4$-c, tCO$_2$, PCV, Hbc and Ca$^{2+}$ levels were 7.49, 19 mmHg, 151 mmHg, 14.5 mmol/L, 99%, 15.1 mmol/L, 21%, 6.5 mg/dL and 0.22 mmol/L, respectively. Serum albumin, alkaline phosphatase, alanine aminotransferase, amylase, aspartate aminotransferase, cholesterol, creatine kinase-MB, creatinine, gamma glutamyl transferase, high density lipoprotein, lactate dehydrogenase, total protein, triglyceride, blood urea nitrogen, glucose, lactic acid levels were 3.2 g/dL, 14 U/L, 22 U/L, 183 U/L, 13 U/L, 140 mg/dL, 865 U/L, 1.39 mg/dL, 7 U/L, 24 mg/dL, 118 U/L, 5.1 g/dL, 150 mg/dL, 36 mg/dL, 85 mg/dL, 1.4 mmol/L, respectively.

It has been reported that incisor malocclusion is the most widespread dental problem in the rabbits, and anorexia frequently comes with malocclusion (Legendre 2002, Huerkamp 2003). There was no observed any other oral pathologic conditions in this case (Figure 1), after visual examination, lateral and dorsoventral radiographies were taken. It was determined that upper incisors whorl into oral cavity, while lower incisors grown in a dorsofacial way. This findings are accepted typically observation in the incisor malocclusion (Girling 2003, Harcourt-Brown 2007).

Haemocell counts, blood gase and serum biochemical values were generally within reference range or values of healthy rabbits (Richardson 2000, Altunok et al 2002, Hernandez-divers 2004, Yazar et al 2004, Elmas et al 2006). However, low PCV, Hbc and calcium level was determined in New Zealand white rabbit. It has been reported that calcium and vitamin D deficiency may play role in the development of malocclusion (Richardson 2000). Low PCV and Hbc levels may be derived from inadequate feeding. Incisor malocclusions were extracted with dog nail trimmer. This device may be used in acute and short-term solution. After the extraction of incisor teeth (Figure 1-C), no need any supportive therapy because incisor malocclusion seldom causes the critical conditions.

As a result, rabbits should be routinely examined to evaluate oral pathology by veterinarian and balanced diet should be given.

Acknowledgements

Abstract was presented at 12th National Veterinary Surgery Congress, Belek, Antalya 19-22 May 2010 and pressed in the proceeding book.

References

